1
|
Kumari G, Dhillon S, Rani P, Chahal M, Aneja DK, Kinger M. Development in the Synthesis of Bioactive Thiazole-Based Heterocyclic Hybrids Utilizing Phenacyl Bromide. ACS OMEGA 2024; 9:18709-18746. [PMID: 38708256 PMCID: PMC11064039 DOI: 10.1021/acsomega.3c10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 05/07/2024]
Abstract
Heterocyclic hybrid frameworks represent a burgeoning domain within the realms of drug discovery and medicinal chemistry, attracting considerable attention in recent years. Thiazole pharmacophore fragments, inherent in natural products such as peptide alkaloids, metabolites, and cyclopeptides, have demonstrated a broad spectrum of pharmacological potentials. Given their profound biological significance, a plethora of thiazole-based hybrids have been synthesized through the conjugation of thiazole moieties with bioactive pyrazole and pyrazoline fragments. This review systematically presents a compendium of robust methodologies for the synthesis of thiazole-linked hybrids, employing the (3 + 2) heterocyclization reaction, specifically the Hantzsch-thiazole synthesis, utilizing phenacyl bromide as the substrate. The strategic approach of molecular hybridization has markedly enhanced drug efficacy, mitigated resistance to multiple drugs, and minimized toxicity concerns. The resultant thiazole-linked hybrids exhibit a myriad of medicinal properties viz. anticancer, antibacterial, anticonvulsant, antifungal, antiviral, and antioxidant activities. This compilation of methodologies and insights serves as a valuable resource for medicinal chemists and researchers engaged in the design of novel thiazole-linked hybrids endowed with therapeutic attribute.
Collapse
Affiliation(s)
- Ginna Kumari
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Sudeep Dhillon
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Priyanka Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Mamta Chahal
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127031, Haryana, India
| |
Collapse
|
2
|
Farghaly TA, Alfaifi GH, Gomha SM. Recent Literature on the Synthesis of Thiazole Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:196-251. [PMID: 37496137 DOI: 10.2174/1389557523666230726142459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
The thiazole ring is naturally occurring and is primarily found in marine and microbial sources. It has been identified in various compounds such as peptides, vitamins (thiamine), alkaloids, epothilone, and chlorophyll. Thiazole-containing compounds are widely recognized for their antibacterial, antifungal, anti-inflammatory, antimalarial, antitubercular, antidiabetic, antioxidant, anticonvulsant, anticancer, and cardiovascular activities. The objective of this review is to present recent advancements in the discovery of biologically active thiazole derivatives, including their synthetic methods and biological effects. This review comprehensively discusses the synthesis methods of thiazole and its corresponding biological activities within a specific timeframe, from 2017 until the conclusion of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghaidaa H Alfaifi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| |
Collapse
|
3
|
Prajapati S, Jana S. Selective recognition of Fe 2+ in aqueous solution by chalcones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123129. [PMID: 37473665 DOI: 10.1016/j.saa.2023.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Recognition of metal ions in aqueous media has direct impact for designing new supramolecular hosts for targeting biochemical pathways. In the present work we have studied the binding behavior of three simple chalcones with variation in number of phenolic OH groups. These chalcones showed very good binding capabilities towards metal ions in CH3OH-H2O (1:1, v/v) solvent system. The receptors R1 has interacted with all metal ions, which are used in the present study through 2:1 mode of complexation whereas R2 have showed equilibrium between the complexes of 2:1 and 1:1 with few exceptions. The highest association constants (K21) of R1 and R2 for Fe2+ is observed as 1.1 × 109 (4) M-1 and 2.3 × 108 (7) M-1 respectively by fluorescence titration method. But R3, which is lack of any phenolic OH group, binds all the metal ions through the formation of 1:1 mode of complex formation by exploiting the only one donor site as carbonyl 'O' atom resulting lower association constant for all the metal ions. So intermolecular hydrogen bonding as well as π- π stacking interaction forced the receptors R1 and R2 to arrange in a pseudo cleft orientation for the recognition of metal ions in 2:1 mode of complex formation. The binding behaviour of the receptors with few alkali metal ions (Na+, K+ and Cs+) and alkaline-earth metal ions (Mg2+, Ca2+ and Ba2+) are also studied and observed weak binding nature in compared with the transition metal ions.
Collapse
Affiliation(s)
- Sunita Prajapati
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University (Central University), Amarkantak, M.P. Pin-484887, India.
| |
Collapse
|
4
|
Omar MA, El-Shiekh RA, Dawood DH, Temirak A, Srour AM. Hydrazone-sulfonate hybrids as potential cholinesterase inhibitors: design, synthesis and molecular modeling simulation. Future Med Chem 2023; 15:2269-2287. [PMID: 37994559 DOI: 10.4155/fmc-2023-0238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
Aim: Design and synthesis of a series of hydrazone-sulfonate hybrids, 5a-r. Methodology: The inhibitory properties of the synthesized compounds against acetylcholinesterase and butyrylcholinesterase were evaluated using donepezil as the reference standard. Results & conclusion: Compound 5e was identified as the most potent inhibitor of acetylcholinesterase (IC50 = 9.30 μM), and compound 5i was the most potent inhibitor of butyrylcholinesterase (IC50 = 11.82 μM). To confirm the safety of the most potent hits at the used doses, toxicological bioassays were conducted. Molecular docking was performed and the tested derivatives were found to fit well in the active sites of both enzymes. This study provides valuable insights into the potential of hydrazone-sulfonate hybrids as drug candidates.
Collapse
Affiliation(s)
- Mohamed A Omar
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Dina H Dawood
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Temirak
- Chemistry of Natural & Microbial Products Department, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical & Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
5
|
Akman S, Akkoc S, Zeyrek CT, Muhammed MT, Ilhan IO. Density functional modeling, and molecular docking with SARS-CoV-2 spike protein (Wuhan) and omicron S protein (variant) studies of new heterocyclic compounds including a pyrazoline nucleus. J Biomol Struct Dyn 2023; 41:12951-12965. [PMID: 36709442 DOI: 10.1080/07391102.2023.2169765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Nowadays, different vaccines and antiviral drugs have been developed and their effectiveness has been proven against SARS-CoV-2. Pyrazoline derivatives are biologically active molecules and exhibit broad-spectrum biological activity properties. In this scope, four new molecules (4a-d) including a pyrazoline core were synthesized in order to predict their antiviral properties theoretically. Compounds 4a-d were purified by the crystallization method. The structures of 4a-d were completely characterized by NMR, IR, and elemental analysis. The molecular structures of the compounds in the ground state have been optimized using density functional theory with the B3LYP/6-31++G(d,p) level. The quantum chemical parameters were predicted by density functional theory calculations. Moreover, the molecular docking studies of 4a-d with SARS-CoV-2 Spike protein (Wuhan) and omicron S protein (variant) were presented to investigate and predict potential interactions. The binding sites, binding types and energies, bond distances of the non-covalent interactions and calculated inhibition constants (calc. Ki) as a consequence of molecular docking for 4a-d were presented in this study. Furthermore, the stability of the protein-4a complex obtained from the docking was investigated through molecular dynamics simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soner Akman
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Turkey
| | - Celal Tugrul Zeyrek
- Department of Medical Services and Techniques, Çankırı Karatekin University, Çankırı, Turkey
| | - Muhammed Tilahun Muhammed
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Suleyman Demirel University, Isparta, Turkey
| | - Ilhan Ozer Ilhan
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Srour AM, Fahmy HH, Khater MA, Zarie ES, Mohamed SS, Abdelhameed MF. Synthesis, anti-inflammatory properties, molecular modelling and potential COX-2, TNF-α, PGE2 and IL1β inhibitors of pyrazole-based scaffolds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|