1
|
Khodarahmian K, Ghiasvand A, Barkhordari A. Exploring the optimal electropolymerization strategy for the preparation of solid-phase microextraction fibers using pyrrole-dopamine copolymers. J Chromatogr A 2024; 1714:464562. [PMID: 38065025 DOI: 10.1016/j.chroma.2023.464562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
In-situ electropolymerization of conductive polymers on the surface of stainless-steel substrates is a well-established but promising procedure for the preparation of solid-phase microextraction (SPME) tools. Herein, different electrochemical methods including constant potential (CP), constant potential pulse (CPP), and cyclic voltammetry (CV) were utilized to fabricate SPME fibers by in-situ electropolymerization of pyrrole-dopamine copolymers (PPY/PDA) on the surface of stainless-steel fibers. The coated fibers were characterized and applied for the direct-immersion SPME (DI-SPME) sampling of ultra-trace amounts of plant hormones including abscisic acid (ABA), gibberellic acid (GA3), and indole acetic acid (IAA) in fruit juices, followed by HPLC-UV determination. The results showed that CV electropolymerization is significantly more efficient than the two other methods. The coatings created by the CV method were satisfactorily uniform, adhesive, and durable and exhibited higher extraction performance compared to the CP and CPP procedures. The important experimental variables of the proposed DI-SPME-HPLC method were evaluated and optimized using response surface methodology with a Box-Behnken design. The developed method showed wide-range linearities, spanning from 0.05 to 20μg mL-1 for GA3, and 0.02 to 20μg mL-1 for ABA and IAA. The limits of detection were obtained 0.01μg mL-1 for GA3, and 0.005μg mL-1 for ABA and IAA. The fiber was successfully employed for the simultaneous DI-SPME-HPLC analysis of plant hormones in fruit juice samples.
Collapse
Affiliation(s)
- Kobra Khodarahmian
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran.
| | - Abdullah Barkhordari
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Zahra Alizadeh S, Karimi B, Vali H. From Deep Eutectic Solvents to Nitrogen‐rich Ordered Mesoporous Carbons: A Powerful Host for the Immobilization of Palladium Nanoparticles in the Aerobic Oxidation of Alcohols. ChemCatChem 2022. [DOI: 10.1002/cctc.202101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seyedeh Zahra Alizadeh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Prof. Sobouti Boulevard 45137-66731 Zanjan Iran
| | - Babak Karimi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Prof. Sobouti Boulevard 45137-66731 Zanjan Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Prof. Sobouti Boulevard 45137-66731 Zanjan Iran
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research McGill University H3A2A7 Montreal Quebec Canada
| |
Collapse
|
3
|
Canpolat G, Dolak İ, Keçili R, Hussain CG, Amiri A, Hussain CM. Conductive Polymer-Based Nanocomposites as Powerful Sorbents: Design, Preparation and Extraction Applications. Crit Rev Anal Chem 2022; 53:1419-1432. [PMID: 35040725 DOI: 10.1080/10408347.2021.2025334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Conductive polymers as composite materials have been attracted tremendous attention due to their versatile and excellent features such as tunable conductivity, facile synthesis and fabrication, high chemical and thermal stability etc. These characteristics make them versatile and let them being used in numerous fields including microelectronics, optics and biosensors. Throughout the mentioned fields, conductive polymers particularly perform as effective sorbents. Although tremendous efforts have been put into this topic, to the best of our knowledge, a comprehensive up-to-date review on the applications of conductive polymers as efficient sorbents has not been reported. The main objective of this paper is to make a significant contribution to the recent literature toward the synthesis and extraction applications of conductive polymers as efficient sorbents.
Collapse
Affiliation(s)
| | - İbrahim Dolak
- Vocational School of Technical Sciences, Dicle University, Diyarbakır, Turkey
| | - Rüstem Keçili
- Department of Medical Services and Techniques, Yunus Emre Vocational School of Health Services, Anadolu University, Eskişehir, Turkey
| | | | - Amirhassan Amiri
- Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
4
|
Szultka-Młyńska M, Janiszewska D, Buszewski B. Molecularly Imprinted Polymers as Solid-Phase Microextraction Fibers for the Isolation of Selected Antibiotics from Human Plasma. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4886. [PMID: 34500975 PMCID: PMC8432719 DOI: 10.3390/ma14174886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to examine the synthesis of novel molecularly imprinted polymer (MIP)-coated polythiophene and poly(3-methylthiophene) solid-phase microextraction fibers using the direct electropolymerization method. Synthesized SPME fibers were characterized with the use of various physicochemical instrumental techniques. MIP-SPME coatings were successfully applied to carry out the selective extraction of selected antibiotic drugs (amoxicillin, cefotaxime, metronidazole) and their metabolites (amoxycilloic acid, amoxicillin diketopiperazine, desacetyl cefotaxime, 3-desacetyl cefotaxime lactone, hydroxymetronidazole). Solid-phase microextraction parameters for the simultaneous determination and identification of target compounds were optimized using the central composite design (CCD), and they accounted for 5-15 min for desorption time, 3-10 for the pH of the desorption solvent, and 30-100 μL for the volume of the desorption solvent. High-performance liquid chromatography and mass spectrometry (MS) detectors such as quadrupole time-of-flight (Q-TOF MS) and triple quadrupole (QqQ MS) were applied to determine and to identify selected antibiotic drugs and their metabolites. The MIP-coated SPME are suitable for the selective extraction of target compounds in biological samples from patients in intensive care units.
Collapse
Affiliation(s)
- Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
| | - Daria Janiszewska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
5
|
Nuckowski Ł, Kaczmarkiewicz A, Studzińska S, Buszewski B. A new approach to preparation of antisense oligonucleotide samples with microextraction by packed sorbent. Analyst 2019; 144:4622-4632. [PMID: 31245798 DOI: 10.1039/c9an00740g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our research focused on applying microextraction by packed sorbent to extracting antisense oligonucleotides from serum samples. The tested sorbents included poly(styrene-co-divinylbenzene), octyl, octadecyl, and unmodified silica gel. As nonpolar sorbents were used for highly-polar molecules, this required ion-pair mode. Comprehensive optimization of extraction conditions was performed for 20-mer phosphorothioate oligonucleotide. Several parametres - the number of "draw-eject" cycles during the conditioning and load step, the amine type and concentration, and the volume of elution mixture - and the influence they had on recovery were studied for nonpolar sorbents, which made it possible to obtain high (ca. 90%) recovery values. The most influential parameter turned out to be the volume of elution mixture. Similar optimization was performed for silica sorbents; however, despite optimization of various parameters, the recovery values stayed relatively low. The optimized procedures for nonpolar sorbents were applied in extraction of six different oligonucleotides of various length and with different structure modifications. The highest recoveries were obtained for octyl and octadecyl sorbents, ranging between 80-99%. The developed microextraction method was used to extract phosphorothioate and 2'-O-(2-methoxyethyl) oligonucleotides and their two synthetic metabolites from enriched human plasma, with recoveries around 70-80%.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland.
| | - Anna Kaczmarkiewicz
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland.
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland.
| | - Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland.
| |
Collapse
|
6
|
Kluska M, Krajewska E, Jabłońska J, Prukała W. New Applications and Analysis of (E)-Azastilbenes in Environmental Samples. Crit Rev Anal Chem 2019; 49:395-402. [DOI: 10.1080/10408347.2018.1537120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mariusz Kluska
- Faculty of Science, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Ewa Krajewska
- Hospital Pharmacy Department, Hospital Solec Sp. z o. o., Warszawa, Poland
| | - Joanna Jabłońska
- Faculty of Science, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Wiesław Prukała
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
7
|
Li X, Dai Y, Row KH. Preparation of two-dimensional magnetic molecularly imprinted polymers based on boron nitride and a deep eutectic solvent for the selective recognition of flavonoids. Analyst 2019; 144:1777-1788. [DOI: 10.1039/c8an02258e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two-dimensional (2D) boron nitride (BN) were developed as a 2D scaffold material in preparation of magnetic molecularly imprinted polymers (MMIPs).
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| | - Yunliang Dai
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| |
Collapse
|
8
|
Li X, Row KH. Application of novel ternary deep eutectic solvents as a functional monomer in molecularly imprinted polymers for purification of levofloxacin. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:56-63. [PMID: 29031109 DOI: 10.1016/j.jchromb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 01/06/2023]
Abstract
A series of ecofriendly ternary deep eutectic solvents (DESs) with different molar ratios were prepared as candidate functional monomers. Three of the optimal ternary DESs as functional monomers were applied to the preparation of molecularly imprinted polymers (MIPs). After synthesis, the proposed polymers were characterized by elemental analysis (EA), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area measurements (BET) and Fourier transform infrared spectroscopy (FT-IR). These MIPs based on ternary DESs with different molar ratios exhibited different absorption capacities of levofloxacin. A sample of levofloxacin (500ng) was dissolved in a millet extractive (10mL). All MIPs were used as SPE adsorbents to purify the extracts. According to characterization result, the ternary DES-3 (1:3:1.5) was joined in the synthetic process of MIP-1. The green ternary DES-3-based MIPs had the best selectivity recovery for levofloxacin (91.4%) from the millet extractive. The best selectivity of MIP-1 was attributed to the novel monomer (ternary DES) in the preparation of the materials. Overall, ternary DES-based MIPs have potential applications as media in many research areas.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, Republic of Korea.
| |
Collapse
|
9
|
Barriga-Rivera A, Bareket L, Goding J, Aregueta-Robles UA, Suaning GJ. Visual Prosthesis: Interfacing Stimulating Electrodes with Retinal Neurons to Restore Vision. Front Neurosci 2017; 11:620. [PMID: 29184478 PMCID: PMC5694472 DOI: 10.3389/fnins.2017.00620] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
The bypassing of degenerated photoreceptors using retinal neurostimulators is helping the blind to recover functional vision. Researchers are investigating new ways to improve visual percepts elicited by these means as the vision produced by these early devices remain rudimentary. However, several factors are hampering the progression of bionic technologies: the charge injection limits of metallic electrodes, the mechanical mismatch between excitable tissue and the stimulating elements, neural and electric crosstalk, the physical size of the implanted devices, and the inability to selectively activate different types of retinal neurons. Electrochemical and mechanical limitations are being addressed by the application of electromaterials such as conducting polymers, carbon nanotubes and nanocrystalline diamonds, among other biomaterials, to electrical neuromodulation. In addition, the use of synthetic hydrogels and cell-laden biomaterials is promising better interfaces, as it opens a door to establishing synaptic connections between the electrode material and the excitable cells. Finally, new electrostimulation approaches relying on the use of high-frequency stimulation and field overlapping techniques are being developed to better replicate the neural code of the retina. All these elements combined will bring bionic vision beyond its present state and into the realm of a viable, mainstream therapy for vision loss.
Collapse
Affiliation(s)
- Alejandro Barriga-Rivera
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
- Division of Neuroscience, University Pablo de Olavide, Sevilla, Spain
| | - Lilach Bareket
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
| | - Josef Goding
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Gregg J. Suaning
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Li X, Choi J, Ahn WS, Row KH. Preparation and Application of Porous Materials based on Deep Eutectic Solvents. Crit Rev Anal Chem 2017; 48:73-85. [DOI: 10.1080/10408347.2017.1383881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoxia Li
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Jinsub Choi
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|
11
|
Sapurina I, Li Y, Alekseeva E, Bober P, Trchová M, Morávková Z, Stejskal J. Polypyrrole nanotubes: The tuning of morphology and conductivity. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Szultka-Mlynska M, Olszowy P, Buszewski B. ChemInform Abstract: Nanoporous Conducting Polymer-Based Coatings in Microextraction Techniques for Environmental and Biomedical Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/chin.201649250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|