1
|
Gashu M, Aragaw BA, Tefera M, Abebe A. Bilayered Film Modified Glassy Carbon Electrode for the Simultaneous Determination of Paracetamol and Chloroquine in Pharmaceutical and Biological Samples. ACS OMEGA 2025; 10:5601-5615. [PMID: 39989786 PMCID: PMC11840614 DOI: 10.1021/acsomega.4c08563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
A new, cost-effective selective and highly sensitive electrochemical sensor (poly(cobalt(II) bis(1,10-phenanthroline) and copper(I) bis(2,2-bipyrdine)), poly(Co(Phen)2/Cu(Bip)2)/GCE) was synthesized based on the sequential electropolymerization of diaquabis(1,10-phenanthroline) cobalt(II)iodide dehydrate ([Co(Phen)2(H2O)2]I2·2H2O) and bis(2,2'-bipyridine)hydroxyl copper(II) iodide ([Cu(Bip)2OH]I) at a glassy carbon electrode. The established sensor (poly(Co(Phen)2/Cu(Bip)2)/GCE)) was employed for the simultaneous electrochemical determination of paracetamol (PCM) and chloroquine (CQ). The established sensor was characterized by FTIR, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The electrochemical performance of unmodified GCE and poly(Co(Phen)2/Cu(Bip)2)/GCE was evaluated for the simultaneous voltammetric determination of PCM and CQ. Using poly(Co(Phen)2/Cu(Bip)2)/GCE and optimized conditions, the simultaneous square wave voltammetric determination of PCM and CQ shows linearity in the concentration range between 0.5 and 200 μM, with sensitivity of 0.389 and 0.462 μA/μM and detection limits (LOD) of (3δ/m) 4.38 × 10-2 and 7.48 × 10-2 μM, respectively. Poly(Co(Phen)2/Cu(Bip)2)/GCE showed excellent performance for the simultaneous sensing of PCM and CQ in pharmaceutical, serum, and urine samples, with spiked recoveries exceeding 98.9, 97.9, and 98.2%, respectively, demonstrating low LOD, excellent sensitivity, admirable selectivity, venerable repeatability, and long-lasting stability. Poly(Co(Phen)2/Cu(Bip)2)/GCE's selectivity for the simultaneous determination of PCM and CQ was shown, demonstrating excellent selectivity despite potential interferences like sulfamethoxazole (SMX), salbutamol (SBM), guanine (Gua), and atorvastatin (ATS). These results designate that poly(Co(Phen)2/Cu(Bip)2)/GCE exhibits admirable applicability for the simultaneous electrochemical sensing of PCM and CQ in various real samples.
Collapse
Affiliation(s)
- Mulu Gashu
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O.Box 79, Bahir Dar 1000, Ethiopia
- Department
of Chemistry, College of Natural and Computational Sciences, Mekdela Amba University, Mekane Selam 1000, Ethiopia
| | - Belete Asefa Aragaw
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O.Box 79, Bahir Dar 1000, Ethiopia
| | - Molla Tefera
- Department
of Chemistry, University of Gondar, P.O. Box 196, Gondar 1000, Ethiopia
| | - Atakilt Abebe
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O.Box 79, Bahir Dar 1000, Ethiopia
| |
Collapse
|
2
|
Chiacchio MA, Campisi A, Iannazzo D, Giofrè SV, Legnani L. Design of New Schiff Bases and Their Heavy Metal Ion Complexes for Environmental Applications: A Molecular Dynamics and Density Function Theory Study. Int J Mol Sci 2024; 25:4159. [PMID: 38673744 PMCID: PMC11050623 DOI: 10.3390/ijms25084159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Schiff bases (SBs) are important ligands in coordination chemistry due to their unique structural properties. Their ability to form complexes with metal ions has been exploited for the environmental detection of emerging water contaminants. In this work, we evaluated the complexation ability of three newly proposed SBs, 1-3, by complete conformational analysis, using a combination of Molecular Dynamics and Density Functional Theory studies, to understand their ability to coordinate toxic heavy metal (HMs) ions. From this study, it emerges that all the ligands present geometries that make them suitable to complex HMs through the N-imino moieties or, in the case of 3, with the support of the oxygen atoms of the ethylene diether chain. In particular, this ligand shows the most promising coordination behavior, particularly with Pb2+.
Collapse
Affiliation(s)
- Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Agata Campisi
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, 98166 Messina, Italy;
| | - Salvatore V. Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, 98168 Messina, Italy;
| | - Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
3
|
Das Mahapatra A, Patra C, Sepay N, Sinha C, Chattopadhyay D. Comparative study on Antibacterial efficacy of a series of chromone sulfonamide derivatives against drug-resistant and MDR-isolates. Braz J Microbiol 2024; 55:343-355. [PMID: 38066229 PMCID: PMC10920482 DOI: 10.1007/s42770-023-01194-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/20/2023] [Indexed: 03/09/2024] Open
Abstract
Sulfonamide derivatives have numerous pharmaceutical applications having antiviral, antibacterial, antifungal, antimalarial, anticancer, and antidepressant activities. The structural flexibility of sulfonamide derivatives makes them an excellent candidate for the development of new multi-target agents, although long-time exposure to sulfonamide drugs results in many toxic impacts on human health. However, sulfonamides may be functionalized for developing less toxic and more competent drugs. In this work, sulfonamides including Sulfapyridine (a), Sulfathiazole (b), Sulfamethoxazole (c), and Sulfamerazine (d) are used to synthesize Schiff bases of 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbalde-hyde (1a-1d). The synthesized compounds were spectroscopically characterized and tested against hospital isolates of three Gram-positive (Methicillin-resistant Staphylococcus aureus PH217, Ampicillin-resistant Coagulase-negative Staphylococcus aureus, multidrug-resistant (MDR) Enterococcus faecalis PH007R) and two Gram-negative bacteria (multidrug-resistant Escherichia coli, and Salmonella enterica serovar Typhi), compared to the quality control strains from ATCC (S. aureus 29213, E. faecalis 25922, E. coli 29212) and MTCC (S. Typhi 734). Two of the four Schiff bases 1a and 1b are found to be more active than their counterpart 1c and 1d; while 1a have showed significant activity by inhibiting MRSA PH217 and MDR isolates of E. coli at the minimum inhibitory concentration (MIC) of 150 μg/mL and 128 μg/mL with MBC of 1024 µg/mL, respectively. On the other hand, the MIC of 1b was 150 μg/mL against both S. aureus ATCC 29213 and Salmonella Typhi MTCC 734, compared to the control antibiotics Ampicillin and Gentamycin. Scanning electron microscopy demonstrated the altered surface structure of bacterial cells as a possible mechanism of action, supported by the in-silico molecular docking analysis.
Collapse
Affiliation(s)
- Ananya Das Mahapatra
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Brainware University, Barasat, Kolkata, India
| | - Chiranjit Patra
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | | - Debprasad Chattopadhyay
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India.
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India.
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India.
| |
Collapse
|
4
|
Liu W, Qin Y, Liu S, Xing R, Yu H, Li P. Synthesis and Characterization of Slow-Release Chitosan Oligosaccharide Pyridine Schiff Base Copper Complexes with Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3872-3883. [PMID: 38358096 DOI: 10.1021/acs.jafc.3c04601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Herein, a series of chitosan oligosaccharide copper complexes modified with pyridine groups (CPSx-Cu complexes) were successfully prepared via the Schiff base reaction and ion complexation reaction for slow-release fungicide. The structures of the synthesized derivatives were characterized via Fourier transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance spectroscopy, and the unit configuration of the complexes was calculated using Gaussian software. The slow-release performance experiment demonstrated that the cumulative copper ion release rate of CPSx-Cu complexes was dependent on the type of substituents on the pyridine ring. Furthermore, the in vitro and in vivo antifungal activities of the CPSx-Cu complexes were investigated. At a concentration of 0.4 mg/mL, CPSx-Cu complexes completely inhibited the growth of Pythium vexans and Phytophthora capsici. Results indicated that CPSx-Cu complexes with slow-release ability exhibited better antifungal activity than thiodiazole-copper and copper sulfate basic. This study confirmed that combining chitosan oligosaccharide with bioactive pyridine groups and copper ions is an effective approach to further developing slow-release copper fungicides, providing new possibilities for the application of copper fungicides in green agriculture. This study lays the foundation for further studies on biogreen copper fungicides.
Collapse
Affiliation(s)
- Weixiang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
5
|
Peng CH, Li G, Li KC, Cui XB. Six polyoxotungstate-based transition metal compounds for electrochemical capacitor application and a comparative analysis of factors affecting capacitances. Dalton Trans 2024; 53:3499-3510. [PMID: 38270509 DOI: 10.1039/d3dt04052f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Six different polyoxotungstate-based transition metal complexes were synthesized, namely [Cu5(2,2'-bpy)5(μ2-Cl)2(PO4)2(H2O)2][HPW12O40]·2H2O (1), [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]3[H1.5PW12O40]2·16.25H2O (2), [Cu(2,2'-bpy)2]2[SiW12O40]·10H2O (3), [Zn(phen)3]2[PWVWVI11O40]·5H2O (4), [Zn(phen)2(H2O)]2[SiW12O40]·2H2O (5), and [Zn(2,2'-bpy)2]2[SiW12O40] (6) (2,2'-bpy = 2,2'-bipyridine, inic = isonicotinic acid, phen = 1,10-phenanthroline). Compound 1 is based on [HPW12O40]2- anions, which are accommodated within the open channels of a supramolecular network formed by novel Cu-P-Cl coordination clusters. Compound 2 is constructed from [H1.5PW12O40]1.5- and novel [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]+ coordination fragments, and polyoxoanions are encapsulated within the pores created by the copper coordination fragments, resulting in a unique three-dimensional supramolecular architecture. Compound 3 is a two-dimensional structure formed through the covalent linkage between [SiW12O40]4- and [Cu(2,2'-bpy)2]2+. Compound 4 is a supramolecular architecture formed by [PWVWVI11O40]4- and [Zn(phen)3]2+ coordination fragments, while compound 5 is a supramolecular structure based on POM bi-supported Zn coordination complexes. Compound 6 is a two-dimensional framework structure constituted by [SiW12O40]4- and [Zn(2,2'-bpy)2]2+via covalent interactions. In addition, electrochemical measurement results show that the copper-based tungstate compounds 1-3 and zinc-based tungstate compounds 4-6 exhibit different performances and durabilities as electrochemical capacitors (compound 1 shows the highest specific capacitance of 94.0 F g-1 at 1.5 A g-1, whereas compound 6 maintains the best cycling stability with the capacity retention of 80.7% after 1000 cycles at 4 A g-1.). This study contributes to the development of POM-based transition metal complexes with high capacitance by providing insights into the design and synthesis process.
Collapse
Affiliation(s)
- Cai-Hong Peng
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Guanghua Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Ke-Chang Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Xiao-Bing Cui
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| |
Collapse
|
6
|
Kaur S, Kaur J, Sharma J, Kaur I. S-S bridged Schiff bases as versatile ionophores: Synthesis and application for electrochemical sensing of Copper(II) and Mercury(II). Anal Chim Acta 2024; 1287:342122. [PMID: 38182393 DOI: 10.1016/j.aca.2023.342122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Schiff base derivates (3, 4 and 5) comprising pseudo cavity with different heteroatoms (O, N and S) were designed, synthesized and explored for their detection behaviour towards diverse metal ions. In UV and fluorescence studies, all three receptors exhibited sensitive response towards Cu2+ while 5 showed sensitivity for Hg2+ also. To explore the synthesized receptors for electrochemical behaviour, voltammetric studies were conducted where 3, 4 and 5 exhibited sensitive response towards Cu2+ with detection limits of 9.8 × 10-7 M, 9.0 × 10-7 M and 1.41 × 10-7 M, respectively. The receptor 5 also showed response towards Hg2+ with detection limit of 5.61 × 10-8 M. The formation of complexes, 3/4+Cu2+ and 5+Cu2+/Hg2+ was supported by large values of binding constant and associated negative free energy change. The binding mechanism of 3, 4 and 5 towards respective metal ions was confirmed using 1H-NMR and HR-MS studies. Further, to utilize the proposed sensors for on-site monitoring of analyte metal ions, carbon paste electrodes (CPEs) were constructed by incorporating 3, 4 and 5. All CPEs showed Nernstian response with lower detection limits and excellent selectivity and successfully utilized for the determination of Cu2+ and Hg2+ in groundwater samples.
Collapse
Affiliation(s)
- Sarbjeet Kaur
- Department of Chemistry, UGC-Centre for Advanced Studies, Guru Nanak Dev University, Amritsar-143005, India
| | - Jaspreet Kaur
- Department of Chemistry, UGC-Centre for Advanced Studies, Guru Nanak Dev University, Amritsar-143005, India
| | - Jyanti Sharma
- Department of Chemistry, UGC-Centre for Advanced Studies, Guru Nanak Dev University, Amritsar-143005, India
| | - Inderpreet Kaur
- Department of Chemistry, UGC-Centre for Advanced Studies, Guru Nanak Dev University, Amritsar-143005, India.
| |
Collapse
|
7
|
Coandă M, Limban C, Nuță DC. Small Schiff Base Molecules-A Possible Strategy to Combat Biofilm-Related Infections. Antibiotics (Basel) 2024; 13:75. [PMID: 38247634 PMCID: PMC10812491 DOI: 10.3390/antibiotics13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects.
Collapse
Affiliation(s)
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str., 020950 Bucharest, Romania; (M.C.); (D.C.N.)
| | | |
Collapse
|
8
|
Ebrahim RMA, Abdelbagi A, Sulfab Y, Hamdi OAA, Shokri SA, Ali EA. Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes. RSC Adv 2023; 13:27501-27511. [PMID: 37720836 PMCID: PMC10501048 DOI: 10.1039/d3ra04768g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
New nickel(ii), palladium(ii), and platinum(iv) complexes were synthesized by reacting the metal ions with benzidinedioxime in a 1 : 1 mole ratio. The CHN elemental analysis, spectroscopic analyses, and powder X-ray diffraction (PXRD) results showed that two Ni(ii) and two Pd(ii) ions coordinated to two benzidinedioxime ligands via the nitrogen atoms of both oxime groups and the two azomethine nitrogen atoms. In the case of the dinuclear platinum(iv) complex, however, each Pt(iv) is coordinated with the two oxygen atoms of the oxime group and the two azomethine nitrogen atoms of the ligand. Both elemental analyses and PXRD indicated that the complex ions of Ni(ii) and Pt(iv) have distorted octahedral geometry, whereas Pd(ii) has a square planar geometry. Molecular docking studies showed that the nickel(ii) complex is the most potent dual DHPS/DHFR bacterial inhibitor. The receptor of the DHPS enzyme (3ZTE) showed the best interaction with the nickel(ii) complex when compared to a receptor of the DHFR enzyme (3FRB). All the synthesized complexes and ligand exhibited significant results against PS. Aeruginous than their corresponding SMX-TMP drug. Among the three synthesized complexes, the nickel(ii) complex possessed the highest antimicrobial activities against tested microorganisms.
Collapse
Affiliation(s)
- Reem M A Ebrahim
- Biotechnology Department, Africa City of Technology Khartoum Sudan
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology Khartoum Sudan
| | - Abubakar Abdelbagi
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Al-Neelain University Khartoum Sudan
| | - Yousif Sulfab
- Chemistry Department, Faculty of Science and Technology, Al-Neelain University Khartoum Sudan
| | | | - Samah A Shokri
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Al-Neelain University Khartoum Sudan
| | - Elmugdad A Ali
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology Khartoum Sudan
| |
Collapse
|
9
|
Elsayed NH, Monier M, Alatawi RAS, Al-Anazi M, Albalawi M, Alatawi MJ. Selective removal of uranyl ions using ion-imprinted amino-phenolic functionalized chitosan. Int J Biol Macromol 2023; 237:124073. [PMID: 36934819 DOI: 10.1016/j.ijbiomac.2023.124073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
The recovery of uranium from aqueous effluents is very important for both the environment and the future of nuclear power. However, issues of sluggish rates and poor selectivity persist in achieving high-efficiency uranium extraction. In this study, uranyl (UO22+) ions were imprinted on an amino-phenolic chitosan derivative using an ion-imprinting method. First, 3-hydroxy-4-nitrobenzoic acid (HNB) units were joined to chitosan via amide bonding, followed by reducing the -NO2 residues into -NH2. The amino-phenolic chitosan polymer ligand (APCS) was coordinated with UO22+ ions, then cross-linked with epichlorohydrin (ECH), and finally the UO22+ ions were taken away. When compared to non-imprinted sorbent, the resulting UO22+ imprinted sorbent material (U-APCS) recognized the target ions preferentially, allowing for much higher adsorption capacities (qm = 309 ± 1 mg/g) and improved adsorption selectivity for UO22+. The FTIR and XPS analyses supported the pseudo-second-order model's suggestion that chemisorption or coordination is the primary adsorption mechanism by fitting the data well in terms of kinetics. Also, the Langmuir model adequately explained the isotherms, suggesting UO22+ adsorption in the form of monolayers. The pHZPC value was estimated at around 5.7; thus, the optimum uptake pH was achieved between pHs 5 and 6. The thermodynamic properties support the endothermic and spontaneous nature of UO22+ adsorption.
Collapse
Affiliation(s)
- Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia; Department of Polymers and Pigments, National Research Centre, Cairo 12311, Egypt.
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Mody Albalawi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Maher J Alatawi
- Department of Electrical Engineering, Faculty of Engineering, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
10
|
Impedimetric sensor for iron (III) detection based on small molecule (E)-2-((phenylimino)methyl) phenol-modified platinum electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
Chethan B, Rajegowda H, Padmaja D, Lokanath N. Synthesis, structural and exploration of non-covalent interactions of the palladium complex with the crystalline water molecule: A comprehensive quantum chemical approach. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Two new Ag-MOFs: Synthesis, structure, electrocatalytic hydrogen evolution and H2O2 electrochemical sensing. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Kapoor A, Rajput JK. A Prompt Electrochemical Monitoring Platform for Sensitive and Selective Determination of Thiamethoxam Based Using Fe2O3@g-C3N4@MSB Composite Modified Glassy Carbon Electrode. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Hanif M, Kosar N, Mahmood T, Muhammad M, Ullah F, Tahir MN, Ribeiro AI, Khan E. Schiff Bases Derived from 2‐Amino‐6‐methylbenzothiazole, 2‐Amino‐5‐chloropyridine and 4‐Chlorobenzaldehyde: Structure, Computational Studies and Evaluation of Biological Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202203386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muhammad Hanif
- Department of Chemistry University of Malakand 18800 Chakdara Lower Dir Khyber Pakhtunkhwa Pakistan
| | - Naveen Kosar
- Department of Chemistry University of Management and Technology (UMT) C11, Johar Town Lahore Pakistan
| | - Tariq Mahmood
- Department of Chemistry College of Science University of Bahrain Main campus 32038 Sakhir, Kingdom of Bahrain
- Department of Chemistry COMSATS University Islamabad Abbottabad Campus, Abbottabad 22060 Pakistan
| | - Mian Muhammad
- Department of Chemistry University of Malakand 18800 Chakdara Lower Dir Khyber Pakhtunkhwa Pakistan
| | - Farhat Ullah
- Department of Pharmacy University of Malakand 18800 Chakdara Lower Dir Khyber Pakhtunkhwa Pakistan
| | | | - Alany Ingrid Ribeiro
- Laboratorio de Produtos Naturais Departmento de Quimica universidade Federal de sao Carlos, UFSCar Brazil
| | - Ezzat Khan
- Department of Chemistry University of Malakand 18800 Chakdara Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry College of Science University of Bahrain Main campus 32038 Sakhir, Kingdom of Bahrain
| |
Collapse
|
15
|
Zhou F, Gao F, Chang Q, Yang X, Liang L. Three metal complexes with a pyridyl Schiff base: cytotoxicity, migration and mechanism of apoptosis. Dalton Trans 2022; 51:14993-15004. [PMID: 36111968 DOI: 10.1039/d2dt02413f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three metal complexes [CuL(NO3)]n (1), [Cd(HL)(NO3)2]n (2) and [EuL(HCOOH)(H2O)(NO3)2] (3) were synthesized with a pyridyl Schiff ligand L (N'-[(1E)-pyridin-2-ylmethylidene]pyridine-4-carbohydrazide). A crystallographic study revealed that complexes 1 and 2 have a chain structure, and complex 3 is a zero-dimensional monomer. In vitro cytotoxicity studies showed that complex 2 had the best antiproliferative activity against SMMC-7721 cells and complex 3 had the best antiproliferative activity against MDA-MB-231 cells with single-digit IC50 values, both exceeding those of the control drug cisplatin by far. The cell invasion and migration ability through the transwell assay and wound-healing assay showed that the selected complexes could inhibit the invasion and migration of cancer cells. The Hoechst staining assay and ROS generation assay with SMMC-7721 cells indicated that the cytotoxic effects of complex 2 involved apoptosis induction through ROS accumulation. The apoptosis-inducing and cell cycle arrest effects of complex 2 on SMMC-7721 cells indicated that the antitumor effect was achieved through apoptosis induction and inhibition of DNA synthesis by blocking the G0/G1 phase of the cell cycle. In addition, complex 2 showed significant inhibition against B. dysentery with an inhibition circle diameter of 24 mm.
Collapse
Affiliation(s)
- Feiya Zhou
- Department of Chemistry, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Fangxin Gao
- Department of Chemistry, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Qinghua Chang
- Department of Chemistry, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Xianfeng Yang
- Department of Chemistry, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Lili Liang
- Department of Chemistry, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, P. R. China.
| |
Collapse
|
16
|
Abstract
The blood fingerprint enhancement is not so eye-catching as latent fingerprint development in forensic community, but it is indeed an important piece of evidence for personal identification, forensic analysis and even reconstruction of crime scenes. In over past ten years, novel reagents, advanced materials and emerging techniques have growingly participated in blood fingerprint enhancement, which not only leads to a higher level of developing sensitivity, selectivity and contrast, but also endows blood impressions with more forensic significance. This review summarizes recent advances in conventional chemical reagents targeting at heme, protein and amino acid as well as emerging enhancement techniques based on advanced materials, new equipment or methods. Some critical issues in forensic science are also discussed, including partial blood fingerprint enhancement, false positive of developing reagents, the compatibility of blood enhancement technique and DNA, fingerprint age determination, and so on. Finally, we have proposed several urgent problems to be solved and the prospects of some promising techniques were proposed in the field of blood fingerprint enhancement in future work.
Collapse
Affiliation(s)
- Zimin Zhang
- Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, China
| | - Di Peng
- Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, China
| |
Collapse
|
17
|
The use of nanocomposite approach in the construction of carbon paste electrode and its application for the potentiometric determination of iodide. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Chandini K, Nagesh Khadri M, Amoghavarsha N, Sridhar M, Khanum SA. Synthesis, crystal structure, Hirshfeld surface analysis, energy frameworks and computational studies of Schiff base derivative. Heliyon 2022; 8:e10047. [PMID: 36061005 PMCID: PMC9434054 DOI: 10.1016/j.heliyon.2022.e10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
The compound (E)-ethyl 3-(2-(2,4-dinitrophenyl)hydrazono)butanoate (3) was synthesised and crystallized using ethanol as a solvent. The compound was characterized by 1H NMR, and single crystal X-ray diffraction. The compound crystallizes in the monoclinic crystal system with the space group P21/c. The intermolecular interactions and the interaction energies responsible for the stabilization of the molecules were determined by Hirshfeld surface analysis and energy framework calculations. The structure of the compound was optimized by Density Functional Theory calculations and HOMO–LUMO energy gap was calculated. The non–covalent interactions were revealed by reduced density gradient analysis. The Mulliken atomic charges and natural atomic charges were calculated by density functional theory calculations. The reactive sites present in the molecule are shown by molecular electrostatic potential map. The inter and intra molecular charge transfer were investigated by NBO analysis. Crystal structure was confirmed by X-ray diffraction analysis and the atomic coordinates were optimized by DFT calculations. Hirshfeld surface analysis and energy frameworks calculations were carried out. HOMO - LUMO frontier molecular orbitals and molecular electrostatic potential were studied. Reduced density gradient (RDG), and topology analyses were performed. Natural bond orbital analysis was performed to study intramolecular charge transfer.
Collapse
|
19
|
Colorimetric Probing and Fluorescent Chemosensor Features of Functionalized Sulphonamide-Azomethine Derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Ndebele N, Nyokong T. The Electrocatalytic Detection of Nitrite Using Manganese Schiff Base Phthalocyanine Complexes. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00752-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Lima GV, dos Santos Mello L, Dockal ER, Firmino de Oliveira M. Electrochemical determination of ethanol on carbon paste electrode chemically modified with [N,N′-cis-1,2-cyclohexylene bis (salicylideneaminate)] nickel(II) Schiff base complex. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Multivariate optimization of a novel potentiometric sensor to determine silver ions in real water and pharmacological product samples. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02904-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Ceramella J, Iacopetta D, Catalano A, Cirillo F, Lappano R, Sinicropi MS. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics (Basel) 2022; 11:191. [PMID: 35203793 PMCID: PMC8868340 DOI: 10.3390/antibiotics11020191] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Schiff bases (SBs) have extensive applications in different fields such as analytical, inorganic and organic chemistry. They are used as dyes, catalysts, polymer stabilizers, luminescence chemosensors, catalyzers in the fixation of CO2 biolubricant additives and have been suggested for solar energy applications as well. Further, a wide range of pharmacological and biological applications, such as antimalarial, antiproliferative, analgesic, anti-inflammatory, antiviral, antipyretic, antibacterial and antifungal uses, emphasize the need for SB synthesis. Several SBs conjugated with chitosan have been studied in order to enhance the antibacterial activity of chitosan. Moreover, the use of the nanoparticles of SBs may improve their antimicrobial effects. Herein, we provide an analytical overview of the antibacterial and antifungal properties of SBs and chitosan-based SBs as well as SBs-functionalized nanoparticles. The most relevant and recent literature was reviewed for this purpose.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| |
Collapse
|
24
|
Electrocatalytic activity of Schiff base containing copper phthalocyanines towards the detection of catechol: Effect of heteroatoms and asymmetry. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
KM C, Al-Ostoot FH, Shehata EE, Elamin NY, Ferjani H, MA S, NK L. Synthesis, crystal structure, Hirshfeld surface analysis, DFT calculations, 3D energy frameworks studies of Schiff base derivative 2,2′-((1Z,1′Z)-(1,2-phenylene bis(azanylylidene)) bis(methanylylidene)) diphenol. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Mahdy AR, Alfaifi MY, El-Gareb MS, Farouk N, Elshaarawy RF. Design, synthesis, and physicochemical characterization of new aminothiohydantoin Schiff base complexes for cancer chemotherapy. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Zarycz MNC, Schiel MA, Angelina E, Enriz RD. Covalence and π-electron delocalization influence on hydrogen bonds in proton transfer process of o-hydroxy aryl Schiff bases: A combined NMR and QTAIM analysis. J Chem Phys 2021; 155:054307. [PMID: 34364326 DOI: 10.1063/5.0058422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Within the framework of the density functional theory approach, we studied the relationship between the chemical nature of intramolecular hydrogen bonds (HBs) and nuclear magnetic resonance (NMR) parameters, J-couplings and 1H-chemical shifts [δ(1H)], of the atoms involved in such bonds in o-hydroxyaryl Schiff bases during the proton transfer process. For the first time, the shape of the dependence of the degree of covalence in HBs on 1J(N-H), 1J(O-H), 2hJ(O-N), and δ(1H) during the proton transfer process in o-hydroxyaryl Schiff bases was analyzed. Parameters obtained from Bader's theory of atoms in molecules were used to assess the dependence of covalent character in HBs with both the NMR properties. The influence of π-electronic delocalization on 2hJ(N-O) under the proton transfer process was investigated. 2hJ(O-N) in a Mannich base was also studied in order to compare the results with an unsaturated system. In addition, substituent effects on the phenolic ring were investigated. Our results indicate that the covalent character of HBs on both sides of the transition state undergoes a smooth exponential increase as the δ(1H) moves downfield. The degree of covalence of the N⋯H (O⋯H) bond increases linearly as 1J(N-H) (1J(O-H)) becomes more negative, even after reaching the transition state. Non-vanishing values of spin dipolar (SD) and paramagnetic spin orbital terms of 2hJ(O-N) show that π-electronic delocalization has a non-negligible effect on tautomeric equilibrium and gives evidence of the presence of the resonance assisted HB.Variation of the SD term of 2hJ(O-N) follows a similar pattern as the change in the para-delocalization aromaticity index of the chelate ring.
Collapse
Affiliation(s)
- M Natalia C Zarycz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - M Ayelén Schiel
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste; Instituto de Química Básica y Aplicada (IQUIBA-NEA). CONICET, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). CONICET, Ejército de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
28
|
Jose J, Puthanveettil Balakrishnan S. Synthesis, structural characterization, electrochemical and photocatalytic properties of vanadium complex anchored on reduced graphene oxide. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jemini Jose
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | | |
Collapse
|
29
|
Protasenko NA, Baryshnikova SV, Astaf’eva TV, Cherkasov AV, Poddel’sky AI. Mono- and Binuclear Zinc Complexes with a Bidentate Phenol-Containing 2-Benzylideneamino-5-Methylphenol Schiff Base. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421060038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
A Review on the Advancements in the Field of Metal Complexes with Schiff Bases as Antiproliferative Agents. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metal complexes play an essential role in pharmaceutical sciences for their multiple and important activities. Schiff bases are versatile pharmacophores able to form chelating complexes with several metals in different oxidation states. Complexes with Schiff bases are widely described in the literature for their multiple actions and numerous advantages, such as low cost and easy synthesis. They show multiple biological activities, including antimicrobial, antioxidant, antimalarial, antinflammatory and antitumor. Schiff bases may also form complexes with lanthanides and actinides acting as catalysts (e.g., in various synthetic processes) and antitumor agents. This review intends to extend on our previous paper regarding Schiff bases as antitumorals, highlighting the importance, in the field of the anticancer agents, of these tools as ligands of metal complexes.
Collapse
|
31
|
Alcázar J, Geue N, Valladares V, Cañete A, Pérez EG, García-Río L, Santos JG, Aliaga ME. Supramolecular Control of Reactivity toward Hydrolysis of 7-Diethylaminocoumarin Schiff Bases by Cucurbit[7]uril Encapsulation. ACS OMEGA 2021; 6:10333-10342. [PMID: 34056186 PMCID: PMC8153742 DOI: 10.1021/acsomega.1c00683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 05/06/2023]
Abstract
A series of aromatic Schiff bases, featuring 7-diethylamino-coumarin and with five different substituents at an adjacent phenyl ring, were synthesized and characterized. With the aim of assessing the stability of these dyes in acidic medium, their hydrolysis reactions were kinetically studied in the absence and presence of the macrocycle cucurbit[7]uril (CB[7]). Our results are consistent with a model containing three different forms of substrates (un-, mono-, and diprotonated) and three parallel reaction pathways. The pK a values and the rate constants were estimated and discussed in terms of the presence of a hydroxyl group at the ortho position and electron-releasing groups on the phenyl ring of the dyes. The kinetic study in the presence of CB[7] led to two different behaviors. Promotion of the reaction by CB[7] was observed for the hydrolysis of the Schiff bases containing only one coordination site toward the macrocycle. Conversely, an inhibitor effect was observed for the hydrolysis of a Schiff base with two coordination sites toward CB[7]. The latter effect could be explained with a model as a function of a prototropic tautomeric equilibrium and the formation of a 2:1 host/guest complex, which prevents the attack of water. Therefore, the kinetic results demonstrated a supramolecular control of the macrocycle toward the reactivity and stability of 7-diethylaminocoumarin Schiff bases in acidic medium.
Collapse
Affiliation(s)
- Jackson
J. Alcázar
- Facultad
de Química y de Farmacia, Pontificia
Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
| | - Niklas Geue
- Department
of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Verónica Valladares
- Facultad
de Química y de Farmacia, Pontificia
Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
| | - Alvaro Cañete
- Instituto
de Ciencias Químicas Aplicadas, Universidad
Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago 2520000, Chile
| | - Edwin G. Pérez
- Facultad
de Química y de Farmacia, Pontificia
Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
| | - Luis García-Río
- Departamento
de Química Física, Centro de Investigación en
Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago, 15782 Santiago, Spain
| | - José G. Santos
- Facultad
de Química y de Farmacia, Pontificia
Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
| | - Margarita E. Aliaga
- Facultad
de Química y de Farmacia, Pontificia
Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
| |
Collapse
|
32
|
Orr SA, Andrews PC, Blair VL. Main Group Metal-Mediated Transformations of Imines. Chemistry 2021; 27:2569-2588. [PMID: 32761667 DOI: 10.1002/chem.202003108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Main-group-metal-mediated transformations of imines have earned a valued place in the synthetic chemist's toolbox. Their versatility allows the simple preparation of various nitrogen containing compounds. This review will outline the early discoveries including metallation, addition/cyclisation and metathesis pathways, followed by the modern-day use of imines in synthetic methodology. Recent advances in imine C-F activation protocols are discussed, alongside revisiting "classic" imine reactivity from a sustainable perspective. Developments in catalytic methods for hydroelementation of imines have been reviewed, highlighting the importance of s-block metals in the catalytic arena. Whilst stoichiometric transformations in alternative reaction media such as deep eutectic solvents or water have been summarised. The incorporation of imines into flow chemistry has received recent attention and is summarised within.
Collapse
Affiliation(s)
- Samantha A Orr
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| | - Victoria L Blair
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| |
Collapse
|
33
|
Sýs M, Mukherjee A, Jashari G, Adam V, Ashrafi AM, Novák M, Richtera L. Bis(2,2'-bipyridil)Copper(II) Chloride Complex: Tyrosinase Biomimetic Catalyst or Redox Mediator? MATERIALS (BASEL, SWITZERLAND) 2020; 14:E113. [PMID: 33383885 PMCID: PMC7795177 DOI: 10.3390/ma14010113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022]
Abstract
In this article, construction of amperometric sensor(s) based on screen-printed carbon electrodes covered by thin layers of two types of carbon nanomaterials serving as amplifiers, and containing [Cu(bipy)2Cl]Cl∙5H2O complex is reported. Their performance and biomimetic activity towards two selected neurotransmitters (dopamine and serotonin) was studied mainly using flow injection analysis (FIA). The important parameters of FIA such as working potential, flow rate, and pH were optimized. The mechanism of the catalytic activity is explained and experimentally confirmed. It reveals that presence of hydrogen peroxide plays a crucial role which leads to answer the title question: can presented complex really be considered as a tyrosinase biomimetic catalyst or only as a redox mediator?
Collapse
Affiliation(s)
- Milan Sýs
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (M.S.); (G.J.)
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (V.A.); (A.M.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Granit Jashari
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (M.S.); (G.J.)
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (V.A.); (A.M.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Amir M. Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (V.A.); (A.M.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Lukáš Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (V.A.); (A.M.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| |
Collapse
|
34
|
Yusuf TL, Oladipo SD, Olagboye SA, Zamisa SJ, Tolufashe GF. Solvent-free synthesis of nitrobenzyl Schiff bases: Characterization, antibacterial studies, density functional theory and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
New Coordination Compounds of CuII with Schiff Base Ligands—Crystal Structure, Thermal, and Spectral Investigations. CRYSTALS 2020. [DOI: 10.3390/cryst10111004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The new mono-, di- and tetranuclear coordination compounds [Cu(HL1)]·H2O (1), [Cu2(L1)(OAc)(MeOH)]·2H2O·MeOH (2), [Cu4(L2)2(OAc)2]·4MeOH (3), and [Cu4(L2)2(OAc)2]·4H2O·4MeOH (4) were synthesized by the direct reaction of 2,2′-{(2-hydroxypropane-1,3-diyl)bis[nitrilomethylidene]}bis(4-bromo-6-methoxyphenol) (H3L1) or 2,2′-{(2-hydroxypropane-1,3-diyl)bis(nitriloeth-1-yl-1-ylidene)}diphenol (H3L2) and the Cu(II) salt. They were characterized by elemental analysis, X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy, simultaneous thermal analysis and differential scanning calorimetry (TG/DSC), and thermal analysis coupled with Fourier transform infrared spectroscopy (TG-FTIR) techniques and the single crystal X-ray diffraction study. In the dinuclear complex 2, the copper(II) ions are bridged by an alkoxo- and a carboxylato bridges. The tetranuclear complexes 3 and 4 are formed from dinuclear species linkage through the phenoxo oxygen atoms of the fully deprotonated H3L2. Compounds 1–4 are stable at room temperature. During heating in air, at first, the solvent molecules (water and/or methanol) are lost and after that, the organic part undergoes defragmentation and combustion. The final decomposition solid product is CuO. The main gaseous products resulting from the thermal degradation of 1–4 in a nitrogen atmosphere were: H2O, MeOH, CH3COOH, CH4, C6H5OH, CO2, CO, and NH3.
Collapse
|
36
|
Miroslaw B. Homo- and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated by Imine Schiff Base Ligands. Int J Mol Sci 2020; 21:E3493. [PMID: 32429112 PMCID: PMC7278988 DOI: 10.3390/ijms21103493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Chemistry of Schiff base (SB) ligands began in 1864 due to the discovery made by Hugo Schiff (Schiff, H., Justus Liebigs Ann. der Chemie 1864, 131 (1), 118-119). However, there is still a vivid interest in coordination compounds based on imine ligands. The aim of this paper is to review the most recent concepts on construction of homo- and hetero-oligonuclear Schiff base coordination compounds narrowed down to the less frequently considered complexes of platinum group metals (PGM). The combination of SB and PGM in oligonuclear entities has several advantages over mononuclear or polynuclear species. Such complexes usually exhibit better electroluminescent, magnetic and/or catalytic properties than mononuclear ones due to intermetallic interactions and frequently have better solubility than polymers. Various construction strategies of oligodentate imine ligands for coordination of PGM are surveyed including simple imine ligands, non-innocent 1,2-diimines, chelating imine systems with additional N/O/S atoms, classic N2O2-compartmental Schiff bases and their modifications resulting in acyclic fused ligands, macrocycles such as calixsalens, metallohelical structures, nano-sized molecular wheels and hybrid materials incorporating mesoionic species. Co-crystallization and formation of metallophilic interactions to extend the mononuclear entities up to oligonuclear coordination species are also discussed.
Collapse
Affiliation(s)
- Barbara Miroslaw
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
37
|
A combined experimental and theoretical study on an ionic cobalt(III/II) complex with a Schiff base ligand. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Pikoli S, Hosten E, Abrahams A. The effect of ligand design on the structural and photophysical properties of Nd(III) complexes with Schiff bases of the [(phenylimino)methyl]phenol-type. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1750604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sibongile Pikoli
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Eric Hosten
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Abubak’r Abrahams
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
39
|
|