1
|
Rehan M, Al-Bahadly I, Thomas DG, Young W, Cheng LK, Avci E. Smart capsules for sensing and sampling the gut: status, challenges and prospects. Gut 2023; 73:186-202. [PMID: 37734912 PMCID: PMC10715516 DOI: 10.1136/gutjnl-2023-329614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
Smart capsules are developing at a tremendous pace with a promise to become effective clinical tools for the diagnosis and monitoring of gut health. This field emerged in the early 2000s with a successful translation of an endoscopic capsule from laboratory prototype to a commercially viable clinical device. Recently, this field has accelerated and expanded into various domains beyond imaging, including the measurement of gut physiological parameters such as temperature, pH, pressure and gas sensing, and the development of sampling devices for better insight into gut health. In this review, the status of smart capsules for sensing gut parameters is presented to provide a broad picture of these state-of-the-art devices while focusing on the technical and clinical challenges the devices need to overcome to realise their value in clinical settings. Smart capsules are developed to perform sensing operations throughout the length of the gut to better understand the body's response under various conditions. Furthermore, the prospects of such sensing devices are discussed that might help readers, especially health practitioners, to adapt to this inevitable transformation in healthcare. As a compliment to gut sensing smart capsules, significant amount of effort has been put into the development of robotic capsules to collect tissue biopsy and gut microbiota samples to perform in-depth analysis after capsule retrieval which will be a game changer for gut health diagnosis, and this advancement is also covered in this review. The expansion of smart capsules to robotic capsules for gut microbiota collection has opened new avenues for research with a great promise to revolutionise human health diagnosis, monitoring and intervention.
Collapse
Affiliation(s)
- Muhammad Rehan
- Department of Electronic Engineering, Sir Syed University of Engineering & Technology, Karachi, Pakistan
| | - Ibrahim Al-Bahadly
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- AgResearch Ltd, Palmerston North, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ebubekir Avci
- Department of Mechanical and Electrical Engineering, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
2
|
Rodríguez-Hernández P, Cardador MJ, Ríos-Reina R, Sánchez-Carvajal JM, Galán-Relaño Á, Jurado-Martos F, Luque I, Arce L, Gómez-Laguna J, Rodríguez-Estévez V. Detection of Mycobacterium tuberculosis complex field infections in cattle using fecal volatile organic compound analysis through gas chromatography-ion mobility spectrometry combined with chemometrics. Microbiol Spectr 2023; 11:e0174323. [PMID: 37702485 PMCID: PMC10581036 DOI: 10.1128/spectrum.01743-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/30/2023] [Indexed: 09/14/2023] Open
Abstract
Bovine tuberculosis is considered a re-emerging disease caused by different species from the Mycobacterium tuberculosis complex (MTC), important not only for the livestock sector but also for public health due to its zoonotic character. Despite the numerous efforts that have been carried out to improve the performance of the current antemortem diagnostic procedures, nowadays, they still pose several drawbacks, such as moderate to low sensitivity, highlighting the necessity to develop alternative and innovative tools to complement control and surveillance frameworks. Volatilome analysis is considered an innovative approach which has been widely employed in animal science, including animal health field and diagnosis, due to the useful and interesting information provided by volatile metabolites. Therefore, this study assesses the potential of gas chromatography coupled to ion mobility spectrometry (GC-IMS) to discriminate cattle naturally infected (field infections) by MTC from non-infected animals. Volatile organic compounds (VOCs) produced from feces were analyzed, employing the subsequent information through chemometrics. After the evaluation of variable importance for the projection of compounds, the final discriminant models achieved a robust performance in cross-validation, as well as high percentages of correct classification (>90%) and optimal data of sensitivity (91.66%) and specificity (99.99%) in external validation. The tentative identification of some VOCs revealed some coincidences with previous studies, although potential new compounds associated with the discrimination of infected and non-infected subjects were also addressed. These results provide strong evidence that a volatilome analysis of feces through GC-IMS coupled to chemometrics could become a valuable methodology to discriminate the infection by MTC in cattle. IMPORTANCE Bovine tuberculosis is endemic in many countries worldwide and poses important concerns for public health because of their zoonotic condition. However, current diagnostic techniques present several hurdles, such as low sensitivity and complexity, among others. In this regard, the development of new approaches to improve the diagnosis and control of this disease is considered crucial. Volatile organic compounds are small molecular mass metabolites which compose volatilome, whose analysis has been widely employed with success in different areas of animal science including animal health. The present study seeks to evaluate the combination of fecal volatilome analysis with chemometrics to detect field infections by bovine tuberculosis (Mycobacterium tuberculosis complex) in cattle. The good robust performance of discriminant models as well as the optimal data of sensitivity and specificity achieved highlight volatilome analysis as an innovative approach with huge potential.
Collapse
Affiliation(s)
- Pablo Rodríguez-Hernández
- Department of Animal Production, UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - María José Cardador
- Department of Analytical Chemistry, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Rocío Ríos-Reina
- Departamento de Nutrición y Bromatología, Área de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Ángela Galán-Relaño
- Department of Animal Health, UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | | | - Inmaculada Luque
- Department of Animal Health, UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| |
Collapse
|
3
|
Schäfer TV, Vakunenkova OA, Ivnitsky JJ, Golovko AI. Gut Barrier in Critical States of the Body. BIOLOGY BULLETIN REVIEWS 2022. [PMCID: PMC9297268 DOI: 10.1134/s2079086422040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intestinal barrier (IB) is a system of diffusion barriers separating the intestinal chyme and blood. The aim of the review is to identify the role of IB dysfunction in the formation of critical states of the body and to substantiate ways to prevent these states. Toxic substances produced by normal intestinal microflora are characterized. The involvement of endotoxin and ammonia in the pathogenesis of sepsis, acute circulatory disorders, secondary acute pulmonary lesions, and acute cerebral insufficiency is shown. Approaches to protect the IB in critical states of the body are proposed.
Collapse
Affiliation(s)
- T. V. Schäfer
- State Scientific Research and Testing Institute of Military Medicine, St. Petersburg, Russia
| | - O. A. Vakunenkova
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| | - Ju. Ju. Ivnitsky
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| | - A. I. Golovko
- Golikov Scientific and Clinical Center of Toxicology, St. Petersburg, Russia
| |
Collapse
|
4
|
Ivnitsky JJ, Schäfer TV, Rejniuk VL, Vakunenkova OA. Secondary Dysfunction of the Intestinal Barrier in the Pathogenesis of Complications of Acute Poisoning. J EVOL BIOCHEM PHYS+ 2022; 58:1075-1098. [PMID: 36061072 PMCID: PMC9420239 DOI: 10.1134/s0022093022040123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
Abstract
The last decade has been marked by an exponential increase
in the number of publications on the physiological role of the normal
human gut microbiota. The idea of a symbiotic relationship between
the human organism and normal microbiota of its gastrointestinal
tract has been firmly established as an integral part of the current
biomedical paradigm. However, the type of this symbiosis varies
from mutualism to parasitism and depends on the functional state
of the host organism. Damage caused to the organism by external
agents can lead to the emergence of conditionally pathogenic properties
in the normal gut microbiota, mediated by humoral factors and affecting
the outcome of exogenous exposure. Among the substances produced
by symbiotic microbiota, there are an indefinite number of compounds
with systemic toxicity. Some occur in the intestinal chyme in potentially
lethal amounts in the case they enter the bloodstream quickly. The quick
entry of potential toxicants is prevented by the intestinal barrier
(IB), a set of structural elements separating the intestinal chyme
from the blood. Hypothetically, severe damage to the IB caused by
exogenous toxicants can trigger a leakage and subsequent systemic
redistribution of toxic substances of bacterial origin. Until recently,
the impact of such a redistribution on the outcome of acute exogenous
poisoning remained outside the view of toxicology. The present review
addresses causal relationships between the secondary dysfunction
of the IB and complications of acute poisoning. We characterize
acute systemic toxicity of such waste products of the normal gut microflora
as ammonia and endotoxins, and demonstrate their involvement in
the formation of such complications of acute poisoning as shock,
sepsis, cerebral insufficiency and secondary lung injuries. The
principles of assessing the functional state of the IB and the approaches
to its protection in acute poisoning are briefly considered.
Collapse
Affiliation(s)
- Ju. Ju. Ivnitsky
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| | - T. V. Schäfer
- State Scientific Research Test Institute of Military Medicine, Ministry of Defense of the Russian Federation, St. Petersburg, Russia
| | - V. L. Rejniuk
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| | - O. A. Vakunenkova
- Golikov Research Clinical Center of Toxicology, Federal Medical Biological Agency, St. Petersburg, Russia
| |
Collapse
|
5
|
Rodríguez-Hernández P, Saavedra D, Martín-Gómez A, Cardador MJ, Arce L, Rodríguez-Estévez V. In vivo authentication of Iberian pig feeding regime using faecal volatilome information. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
de Jesús Beleño-Sáenz K, Cáceres-Tarazona JM, Nol P, Jaimes-Mogollón AL, Gualdrón-Guerrero OE, Durán-Acevedo CM, Barasona JA, Vicente J, Torres MJ, Welearegay TG, Österlund L, Rhyan J, Ionescu R. Non-Invasive Method to Detect Infection with Mycobacterium tuberculosis Complex in Wild Boar by Measurement of Volatile Organic Compounds Obtained from Feces with an Electronic Nose System. SENSORS 2021; 21:s21020584. [PMID: 33467480 PMCID: PMC7829825 DOI: 10.3390/s21020584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Doñana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12-24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.
Collapse
Affiliation(s)
- Kelvin de Jesús Beleño-Sáenz
- Mechatronics Engineering Department, Universidad Autónoma del Caribe, Barranquilla 080020, Colombia;
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Juan Martín Cáceres-Tarazona
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Pauline Nol
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection, Service, United States Department of Agriculture, Fort Collins, CO 80526, USA; (P.N.); (J.R.)
| | - Aylen Lisset Jaimes-Mogollón
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Oscar Eduardo Gualdrón-Guerrero
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Cristhian Manuel Durán-Acevedo
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, Pamplona 543050, Colombia; (J.M.C.-T.); (A.L.J.-M.); (O.E.G.-G.); (C.M.D.-A.)
| | - Jose Angel Barasona
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Joaquin Vicente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, ETSIA Ciudad Real, University of Castilla La Mancha & CSIC, 13003 Ciudad Real, Spain;
| | - María José Torres
- Biomedical Institute of Sevilla (IBiS), University of Seville, University Hospital Virgen del Rocío/CSIC, 41071 Seville, Spain;
| | - Tesfalem Geremariam Welearegay
- The Ångström Laboratory, Department of Materials Science and Engineering Sciences, Uppsala University, P.O. Box 35, 75103 Uppsala, Sweden; (T.G.W.); (L.Ö.)
| | - Lars Österlund
- The Ångström Laboratory, Department of Materials Science and Engineering Sciences, Uppsala University, P.O. Box 35, 75103 Uppsala, Sweden; (T.G.W.); (L.Ö.)
| | - Jack Rhyan
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection, Service, United States Department of Agriculture, Fort Collins, CO 80526, USA; (P.N.); (J.R.)
| | - Radu Ionescu
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Correspondence:
| |
Collapse
|