1
|
Yu Y, Liu H, Li M, Chen Y, An X, Zhang H, Liang Y, Wang J. Catalase-induced changes in rheological properties and structure of wheat gluten proteins. Food Chem 2025; 478:143764. [PMID: 40058254 DOI: 10.1016/j.foodchem.2025.143764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/06/2025]
Abstract
This study investigates the impact of catalase (CAT) on the rheological properties of wheat gluten by analyzing CAT-induced structural changes in gluten proteins to uncover the mechanisms behind these modifications. The results showed that CAT significantly enhanced the storage modulus (G') and loss modulus (G″) of gluten while reducing creep strain and recovery strain. The most pronounced effects were observed with the addition of 250 U/g CAT for 30 min. CAT facilitated the formation of larger molecular weight aggregates in gluten proteins and increased the content of disulfide bonds and β-sheets, reaching 11.42 μmol/g and 45.78 %, respectively, after treatment with 250 U/g CAT for 30 min. These structural changes reduced the hydrophobic regions of gluten, lowered gluten extractability, and enhanced the compactness and stability of the gluten network. These effects substantially influenced the rheological behavior of wheat gluten, offering new insights and practical guidance for improving gluten-based products using CAT.
Collapse
Affiliation(s)
- Yingtao Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Minglin Li
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Yanyan Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xin An
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huihui Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Shamshad A, Rashid M, Hameed A, Imran Arshad HM. Identification of biochemical indices for brown spot (Bipolaris oryzae) disease resistance in rice mutants and hybrids. PLoS One 2024; 19:e0300760. [PMID: 38635807 PMCID: PMC11025958 DOI: 10.1371/journal.pone.0300760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/03/2024] [Indexed: 04/20/2024] Open
Abstract
Brown spot caused by Bipolaris oryzae is a major damaging fungal disease of rice which can decrease the yield and value of produce due to grain discoloration. The objectives of the current study were to investigate and understand the biochemical indices of brown spot disease resistance in rice. A total of 108 genotypes (mutant and hybrid) along with Super Basmati and parent RICF-160 were evaluated against brown spot disease. The genotypes exhibiting resistant and susceptible responses to brown spot disease according to the IRRI standard disease rating scale were screened and selected. To study the biochemical response mechanism, forty five selected genotypes along with Super Basmati and RICF-160 were analyzed using the biochemical markers. The physiological and biochemical analysis provided valuable insights and confirmed the resistance of rice hybrids and mutants against brown spot disease. Positive correlations were observed among stress bio-markers and disease response. Rice genotypes i.e. Mu-AS-8, Mu-AS-19, Mu-AS-20 and Mu-AS-35 exhibited moderate resistant response while Hy-AS-92, Hy-AS-98, Hy-AS-99, Hy-AS-101, Hy-AS-102 and Hy-AS-107 showed resistant response to brown spot disease. Brown spot resistant rice genotypes had lesser values of malondialdehyde and total oxidant status and higher antioxidant activities i.e. superoxide dismutase, peroxidase, total phenolic content and lycopene. The selected resistant rice genotypes had resistance capacity against Bipolaris oryzae stress. In conclusion, identified resistant mutants i.e. Mu-AS-8, Mu-AS-19, Mu-AS-20 and Mu-AS-35 and hybrids i.e. Hy-AS-92, Hy-AS-98, Hy-AS-99, Hy-AS-101, Hy-AS-102 and Hy-AS-107 could be used in rice breeding program to achieve sustainable rice production by coping the emerging challenge of brown spot disease under variable climate conditions.
Collapse
Affiliation(s)
- Areeqa Shamshad
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences NIAB-C, PIEAS, Faisalabad, Pakistan
| | - Muhammad Rashid
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences NIAB-C, PIEAS, Faisalabad, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences NIAB-C, PIEAS, Faisalabad, Pakistan
| | - Hafiz Muhammad Imran Arshad
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences NIAB-C, PIEAS, Faisalabad, Pakistan
| |
Collapse
|
3
|
Sabach O, Buhnik-Rosenblau K, Kesten I, Freilich S, Freilich S, Kashi Y. The rise of the sourdough: Genome-scale metabolic modeling-based approach to design sourdough starter communities with tailored-made properties. Int J Food Microbiol 2023; 407:110402. [PMID: 37778079 DOI: 10.1016/j.ijfoodmicro.2023.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023]
Abstract
Sourdough starters harbor microbial consortia that benefit the final product's aroma and volume. The complex nature of these spontaneously developed communities raises challenges in predicting the fermentation phenotypes. Herein, we demonstrated for the first time in this field the potential of genome-scale metabolic modeling (GEMs) in the study of sourdough microbial communities. Broad in-silico modeling of microbial growth was applied on communities composed of yeast (Saccharomyces cerevisiae) and different Lactic Acid Bacteria (LAB) species, which mainly predominate in sourdough starters. Simulations of model-represented communities associated specific bacterial compositions with sourdough phenotypes. Based on ranking the phenotypic performances of different combinations, Pediococcus spp. - Lb. sakei group members were predicted to have an optimal effect considering the increase in S. cerevisiae growth abilities and overall CO2 secretion rates. Flux Balance Analysis (FBA) revealed mutual relationships between the Pediococcus spp. - Lb. sakei group members and S. cerevisiae through bidirectional nutrient dependencies, and further underlined that these bacteria compete with the yeast over nutrients to a lesser extent than the rest LAB species. Volatile compounds (VOCs) production was further modeled, identifying species-specific and community-related VOCs production profiles. The in-silico models' predictions were validated by experimentally building synthetic sourdough communities and assessing the fermentation phenotypes. The Pediococcus spp. - Lb. sakei group was indeed associated with increased yeast cell counts and fermentation rates, demonstrating a 25 % increase in the average leavening rates during the first 10 fermentation hours compared to communities with a lower representation of these group members. Overall, these results provide a possible novel strategy towards the de-novo design of sourdough starter communities with tailored-made characterizations, including a shortened leavening period.
Collapse
Affiliation(s)
- Omer Sabach
- Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | | | - Inbar Kesten
- Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | - Shay Freilich
- Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel.
| |
Collapse
|
4
|
Sinaki NY, Paliwal J, Koksel F. Enhancing the Techno-Functionality of Pea Flour by Air Injection-Assisted Extrusion at Different Temperatures and Flour Particle Sizes. Foods 2023; 12:foods12040889. [PMID: 36832963 PMCID: PMC9957081 DOI: 10.3390/foods12040889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Industrial applications of pulses in various food products depend on pulse flour techno-functionality. To manipulate the techno-functional properties of yellow pea flour, the effects of flour particle size (small vs. large), extrusion temperature profile (120, 140 and 160 °C at the die) and air injection pressure (0, 150 and 300 kPa) during extrusion cooking were investigated. Extrusion cooking caused the denaturation of proteins and gelatinization of starch in the flour, which induced changes in the techno-functionality of the extruded flour (i.e., increased water solubility, water binding capacity and cold viscosity and decreased emulsion capacity, emulsion stability, and trough and final viscosities). In general, the large particle size flour required less energy input to be extruded and had higher emulsion stability and trough and final viscosities compared to the small particle size flour. Overall, among all of the treatments studied, extrudates produced with air injection at 140 and 160 °C had higher emulsion capacity and emulsion stability, making them relatively better suited food ingredients for emulsified foods (e.g., sausages). The results indicated air injection's potential as a novel extrusion technique combined with modification of flour particle size distribution and extrusion processing conditions to effectively manipulate product techno-functionality and broaden the applications of pulse flours in the food industry.
Collapse
Affiliation(s)
- Nasibeh Y. Sinaki
- Department of Food and Human Nutritional Sciences, University of Manitoba, 250 Ellis Building, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB R3T 2N2, Canada
| | - Filiz Koksel
- Department of Food and Human Nutritional Sciences, University of Manitoba, 250 Ellis Building, 13 Freedman Crescent, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
5
|
Luo S, Koksel F. Application of physical blowing agents in extrusion cooking of protein enriched snacks: Effects on product expansion, microstructure, and texture. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Tao H, Chen X, Li R, Wang Z, Zhao X, Liu C, Duan S, Wang X. A flexible visual detection of calcium peroxide in flour employing enhanced catalytic activity of heterogeneous catalysts binary copper trapped silica-layered magnetite nanozyme. Colloids Surf B Biointerfaces 2022; 219:112823. [PMID: 36088830 DOI: 10.1016/j.colsurfb.2022.112823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
Herein, a novel heterogeneous nanozyme with peroxidase (POD)-like activity was conducted to achieve ultrasensitive visual detection of calcium peroxide (CaO2) in flour by the assembly of binary copper-trapped mesoporous silica layer coated magnetite nanoparticles (Fe3O4 @SiO2 @CuO NPs). The prepared nanozymes were characterized using HRTEM, SEM, FT-IR, XRD, DLS, and EIS, which displayed a dispersed core-shell structure with a uniform diameter of approximately 100 nm. The nanozymes exhibited remarkable and stable POD-like activity in a wide range of pH values, incubation temperature, and reaction time, and the optimum catalytic activity was obtained at pH 3.6, 37 °C, and 10 min. The quantification range of CaO2 of this method is 0.1-5 mM with a limit as low as 5.6 × 10-3 mM, and it is not affected by multiple interferences. In conclusion, this detection method is sensitive, stable, low-cost, and simple to operate, so it has broad application prospects in the detection of food additives such as CaO2.
Collapse
Affiliation(s)
- Haizhen Tao
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xuyang Chen
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zichao Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xuanping Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chuan Liu
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, PR China.
| | - Xueqin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
7
|
Francavilla A, Joye IJ. Anthocyanin Content of Crackers and Bread Made with Purple and Blue Wheat Varieties. Molecules 2022; 27:7180. [PMID: 36364005 PMCID: PMC9656245 DOI: 10.3390/molecules27217180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 09/10/2023] Open
Abstract
Purple and blue wheats contain anthocyanins in the outer layers of the wheat kernel, and therefore purple and blue wholemeals can be a source of anthocyanins when developing processed cereal products. However, cereal processing is anticipated to cause significant anthocyanin losses. In this study, the anthocyanin content of crackers and bread made from one purple and three blue wholemeals was measured during processing and after baking. LC-MS/MS was used to confirm the presence of anthocyanins, and to tentatively identify them. Mixing and baking steps significantly decreased the anthocyanin content, whereas resting and fermentation steps did not. Purple and blue wholemeal samples reacted differently, indicating that the starting anthocyanin content, localization and composition may have some impact on anthocyanin retention. Additionally, dough systems with decreased pH were more protective of anthocyanins during intermediate processing steps, as were high-temperature, short-time baking procedures. This research provides insights into the processing steps that cause significant anthocyanin losses, and proposes some modifications to formulation and processing conditions which can further reduce losses.
Collapse
Affiliation(s)
| | - Iris J. Joye
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Beghin AS, Ooms N, Hooyberghs K, Coppens E, Pareyt B, Brijs K, Delcour JA. The influence of varying levels of molecular oxygen on the functionality of azodicarbonamide and ascorbic acid during wheat bread making. Food Res Int 2022; 161:111878. [DOI: 10.1016/j.foodres.2022.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022]
|
9
|
Moll S, Zettel V, Delgado A, Hitzmann B. Rheological evaluation of wheat dough treated with ozone and ambient air during kneading and dough formation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah Moll
- Department of Process Analytics and Cereal Science, Institute of Food Science and Biotechnology University of Hohenheim Stuttgart Germany
| | - Viktoria Zettel
- Department of Process Analytics and Cereal Science, Institute of Food Science and Biotechnology University of Hohenheim Stuttgart Germany
| | - Antonio Delgado
- Department of Chemical and Biological Engineering Chair of Fluid Mechanics Institute of Fluid Mechanics (LSTM) Friedrich‐Alexander University Erlangen‐Nürnberg Germany
| | - Bernd Hitzmann
- Department of Process Analytics and Cereal Science, Institute of Food Science and Biotechnology University of Hohenheim Stuttgart Germany
| |
Collapse
|
10
|
Beghin AS, Ooms N, Brijs K, Pareyt B, Delcour JA. Release of
14
C‐labelled carbon dioxide from ascorbic acid during straight dough wheat bread making. Cereal Chem 2022. [DOI: 10.1002/cche.10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alice S. Beghin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Nand Ooms
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
- Biscuiterie Thijs NV Atealaan 69 B‐2200 Herentals Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| | - Bram Pareyt
- Puratos NV Industrialaan 25 B‐1702 Groot‐Bijgaarden Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Kasteelpark Arenberg 20 B‐3001 Leuven Belgium
| |
Collapse
|
11
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
12
|
Sinaki NY, Tulbek M, Koksel F. Oxidizing agent‐assisted extrusion cooking of yellow peas and the techno‐functionality of the resulting extrudate flours. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nasibeh Y. Sinaki
- Food and Human Nutritional Sciences Department University of Manitoba Winnipeg MB Canada
| | - Mehmet Tulbek
- AGT Foods and Ingredients R&D Centre Saskatoon SK Canada
| | - Filiz Koksel
- Food and Human Nutritional Sciences Department University of Manitoba Winnipeg MB Canada
| |
Collapse
|
13
|
Liang Z, Gao J, Yu P, Yang D. History, mechanism of action, and toxicity: a review of commonly used dough rheology improvers. Crit Rev Food Sci Nutr 2021; 63:947-963. [PMID: 34309422 DOI: 10.1080/10408398.2021.1956427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dough rheology improvers, which often are oxidative reagents in nature, have long been used in bread-making industry to enhance protein crosslinking and subsequently improve the dough rheological properties and bread qualities. Numerous studies were conducted to explore the effects of these oxidative agents on dough quality improving, however, the underlying mechanism of their action during dough development has not been fully understood. Due to the public health concerns, multiple oxidative reagents were banned in some countries across the world, while others are still permitted in accordance with regulations. Therefore, a comprehensive understanding of their application, significance, and safety in bread manufacturing is necessary. This review aims to provide a detailed information about the evolutionary history of several commonly used oxidants acting as dough rheology improvers, their mechanisms of action, as well as their potential toxicity.
Collapse
Affiliation(s)
- Zhongxin Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jihui Gao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peixuan Yu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Pourmohammadi K, Abedi E. Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: An extensive review. Food Sci Nutr 2021; 9:3988-4006. [PMID: 34262753 PMCID: PMC8269544 DOI: 10.1002/fsn3.2344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Poor water solubility, emulsifying, and foaming properties of gluten protein have limited its applications. Gluten is structured by covalent (disulfide bonds) and noncovalent bonds (hydrogen bonds, ionic bonds, hydrophobic bonds) which prone to alteration by various treatments. Enzyme modification has the ability to alter certain properties of gluten and compensate the deficiencies in gluten network. By hydrolyzing mechanisms and softening effects, hydrolytic enzymes affect gluten directly and indirectly and improve dough quality. The present review investigates the effects of some hydrolytic enzymes (protease and peptidase, alcalase, xylanase, pentosanase, and cellulase) on the rheological, functional, conformational, and nutritional features of gluten and dough. Overall, protease, peptidase, and alcalase directly affect peptide bonds in gluten. In contrast, arabinoxylan, pentosan, and cellulose are affected, respectively, by xylanase, pentosanase, and cellulase which indirectly affect gluten proteins. The changes in gluten structure by enzyme treatment allow gluten for being used in variety of purposes in the food and nonfood industry.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and TechnologyCollege of AgricultureFasa UniversityFasaIran
| | - Elahe Abedi
- Department of Food Science and TechnologyCollege of AgricultureFasa UniversityFasaIran
| |
Collapse
|
15
|
Beghin AS, Ooms N, Brijs K, Pareyt B, Moldenaers P, Delcour JA. How Yeast Impacts the Effect of Ascorbic Acid on Wheat Flour Dough Extensional Rheology. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09679-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Janssen F, Wouters AGB, Delcour JA. Gas cell stabilization by aqueous-phase constituents during bread production from wheat and rye dough and oat batter: Dough or batter liquor as model system. Compr Rev Food Sci Food Saf 2021; 20:3881-3917. [PMID: 34056854 DOI: 10.1111/1541-4337.12761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023]
Abstract
Proper gas cell stability during fermentation and baking is essential to obtain high-quality bread. Gas cells in wheat dough are stabilized by the gluten network formed during kneading and, from the moment this network locally ruptures, by liquid films containing nonstarch polysaccharides (NSPs) and surface-active proteins and lipids. Dough liquor (DL), the supernatant after ultracentrifugation of dough, is a model system for these liquid films and has been extensively studied mostly in the context of wheat bread making. Nonwheat breads are often of lower quality (loaf volume and crumb structure) than wheat breads because their doughs/batters lack a viscoelastic wheat gluten network. Therefore, gas cell stabilization by liquid film constituents may be more important in nonwheat than in wheat bread making. This manuscript aims to review the knowledge on DL/batter liquor (BL) and its relevance for studying gas cell stabilization in wheat and nonwheat (rye and oat) bread making. To this end, the unit operations in wheat, rye, and oat bread making are described with emphasis on gas incorporation and gas cell (de)stabilization. A discussion of the knowledge on the recoveries and chemical structures of proteins, lipids, and NSPs in DLs/BLs is provided and key findings of studies dealing with foaming and air-water interfacial properties of DL/BL are discussed. Next, the extent to which DL/BL functionality can be related to bread properties is addressed. Finally, the extent to which DL/BL is a representative model system for the aqueous phase of dough/batter is discussed and related to knowledge gaps and further research opportunities.
Collapse
Affiliation(s)
- Frederik Janssen
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition, Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Pourmohammadi K, Abedi E. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chem 2021; 356:129679. [PMID: 33827045 DOI: 10.1016/j.foodchem.2021.129679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Oxidative enzymes treat weak flours in order to restore the gluten network of damaged wheat flour and reduce the economic and technological losses. The present review concentrates on oxidative exogenous enzymes (transglutaminase, laccase, glucose oxidase, hexose oxidase) and oxidative endogenous enzymes (tyrosinase, peroxidase, catalase, sulfhydryl oxidase, lipoxygenase, lipase, protein disulfide isomerase, NAD(P)H-dependent dehydrogenase, thioredoxin reductase and glutathione reductase) and their effects on the rheological, functional, and conformational features of gluten and its subunits. Overall, transglutaminase is used in wheat-based foods through introducing isopeptide bonds (ε-γ glutamyl-lysine). Glucose oxidase, hexose oxidase, peroxidase, sulfhydryl oxidase, lipase, and lipoxygenase form disulfide and nondisulfide bonds through producing hydrogen peroxide. Laccase, tyrosinase, and protein disulfide isomerase form cross-links between tyrosine and cysteine residues by generating radicals. Thioredoxin reductase and glutathione reductase create new inter disulfide bonds. The effect of oxidative enzymes on the formation of covalent cross-linkages were substantially more than non-covalent bonds in gluten structure.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| | - Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran.
| |
Collapse
|
18
|
Peng H, Li B, Tian J. Impact of Punicalagin on the Physicochemical and Structural Properties of Wheat Flour Dough. Foods 2019; 8:foods8120606. [PMID: 31766674 PMCID: PMC6963674 DOI: 10.3390/foods8120606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
The study explored punicalagin (PGN) as a wheat flour enhancer. The impact of PGN on the physicochemical and structural properties of wheat flour have been investigated. It turned out that PGN increased the formation time, stability, tensile resistance, extension, and viscoelasticity of the dough at the concentrations of 0.13 and 0.26 mg/g. Scan electron microscope images of the cross section of the dough displayed a more compact and ordered network structure with the addition of 0.13 and 0.26 mg/g PGN. Fourier transform infrared spectroscopy spectra indicated an increase of α-helix and β-sheet content. However, nonlinear enhancing effects of PGN on the stretching properties, rheology, and structural properties of the dough were observed at concentrations of 0.39 and 0.52 mg/g. Correspondingly, cleavages were observed on the cross section of the dough and the content of β-sheet showed a trend of reduction in the dough with addition of PGN at high concentrations. Taken together, these results indicated the potential usage of PGN as a wheat flour enhancer of natural origin at the concentration below 0.39 mg/g in the flour.
Collapse
Affiliation(s)
- Hong Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Jing Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2111
| |
Collapse
|
19
|
|
20
|
Zhang Y, Chen M, Chen Y, Hou Y, Hu SQ. Characterization and Exploration of Recombinant Wheat Catalase for Improvement of Wheat-Flour-Processing Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2660-2669. [PMID: 30739449 DOI: 10.1021/acs.jafc.8b06646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The wheat catalase gene ( wcat1) was cloned and overexpressed in Pichia pastoris. The purified wCat1 exhibits its highest activity at pH 7.5 and 35 °C with Km and Vmax of 22.95 mM and 0.24 μmol/min, respectively. wCat1 could markedly improve the farinographic properties of dough, with the stability time increasing and degree of softening decreasing, and enhance the rheological properties of dough. wCat1 could also elevate bread-making quality, with increased specific volume of the bread and decreased hardness, gumminess, and chewiness, which are attributable to increased amounts of SDS-insoluble protein in dough, resulting in extended glutenin networks and thus larger pores in the fermented dough and bread crumb. The decrease of hydrogen peroxide and increase of free thiol groups in wCat1-treated dough suggest that the decomposition of hydrogen peroxide by wCat1 likely promotes disulfide-bond formation and thus the cross-linking of dough proteins.
Collapse
Affiliation(s)
- Yaping Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Meirong Chen
- Graduate School of Life Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Yu Chen
- Guangdong Food Industry Research Institute Company Ltd. , Guangzhou , Guangdong 511400 , China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| |
Collapse
|
21
|
|
22
|
Liu WC, Inwood S, Gong T, Sharma A, Yu LY, Zhu P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 2019; 39:258-271. [DOI: 10.1080/07388551.2018.1554620] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Sarah Inwood
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ashish Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| | - Li-Yan Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
23
|
Microbial Ecology and Process Technology of Sourdough Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:49-160. [PMID: 28732554 DOI: 10.1016/bs.aambs.2017.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From a microbiological perspective, sourdough is to be considered as a specific and stressful ecosystem, harboring yeasts and lactic acid bacteria (LAB), that is used for the production of baked goods. With respect to the metabolic impact of the sourdough microbiota, acidification (LAB), flavor formation (LAB and yeasts), and leavening (yeasts and heterofermentative LAB species) are most noticeable. Three distinct types of sourdough fermentation processes can be discerned based on the inocula applied, namely backslopped ones (type 1), those initiated with starter cultures (type 2), and those initiated with a starter culture followed by backslopping (type 3). A sourdough-characteristic LAB species is Lactobacillus sanfranciscensis. A sourdough-characteristic yeast species is Candida humilis. Although it has been suggested that the microbiota of a specific sourdough may be influenced by its geographical origin, region specificity often seems to be an artefact resulting from interpretation of the research data, as those are dependent on sampling, isolation, and identification procedures. It is however clear that sourdough-adapted microorganisms are able to withstand stress conditions encountered during their growth. Based on the technological setup, type 0 (predoughs), type I (artisan bakery firm sourdoughs), type II (industrial liquid sourdoughs), and type III sourdoughs (industrial dried sourdoughs) can be distinguished. The production of all sourdoughs, independent of their classification, depends on several intrinsic and extrinsic factors. Both the flour (type, quality status, etc.) and the process parameters (fermentation temperature, pH and pH evolution, dough yield, water activity, oxygen tension, backslopping procedure and fermentation duration, etc.) determine the dynamics and outcome of (backslopped) sourdough fermentation processes.
Collapse
|