1
|
Churton H, McCabe BK. Advancing a food loss and waste bioproduct industry: A critical review of policy approaches for application in an Australian context. Heliyon 2024; 10:e32735. [PMID: 38975095 PMCID: PMC11225737 DOI: 10.1016/j.heliyon.2024.e32735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Food loss and waste (FLW) contains an abundance of nutrient components that can be extracted and converted into valuable bioproducts through biorefining (e.g., pharmaceuticals, cosmetics, nutrients). Australia has identified bioproducts from a FLW feedstock as one avenue through which it can meet its commitment to UN Sustainable Development Goal Target 12.3, aiming to halve food waste by 2030. An industry for bioproducts in Australia is, however, nascent and will require targeted and sustained policy intervention to advance in line with the production targets it has set to meet Target 12.3. The aim of this critical review is threefold. Firstly, it draws on the research literature to identify barriers to advancing a bioproduct industry from FLW. Secondly, it constructs a taxonomy of policies available to overcome these barriers and support industry development. Finally, it applies the taxonomy to established policy settings in Australia (examining both national settings and Queensland state settings) and the European Union (EU), where the industry and associated policy is more mature. Australia has few national policies directly targeting a bioproduct industry. A comparative assessment of policy settings allows this review to identify lessons Australia can draw from the EU experience as it advances its own industry. Findings demonstrate a complex and fragmented policy landscape. Key recommendations from the literature emphasise the need to establish coordinated strategic instruments; target research and development opportunities for optimised, sustainable processes; and implement appropriate incentives to establish a 'level playing field', as technology readiness increases. The critical requirement for policy stability and coherence, flags the need to lay groundwork policy in this area as a priority.
Collapse
Affiliation(s)
- Hannah Churton
- Centre for a Waste Free World, Faculty of Business and Law, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Fight Food Waste Cooperative Research Centre, Wine Innovation Central Building Level 1, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Bernadette K. McCabe
- Centre for Agricultural Engineering, University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia
- Fight Food Waste Cooperative Research Centre, Wine Innovation Central Building Level 1, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
2
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Abstract
One of the biggest problems faced by food industries is the generation of large amounts of agro-industrial byproducts, such as those derived from fruit processing, as well as the negative effects of their inadequate management. Approximately 1/3 of the food produced worldwide is unused or is otherwise wasted along the chain, which represents a burden on the environment and an inefficiency of the system. Thus, there is growing interest in reintroducing agro-industrial byproducts (both from fruits and other sources) into the processing chain, either by adding them as such or utilizing them as sources of health-promoting bioactive compounds. The present work discusses recent scientific studies on the nutritional and bioactive composition of some agro-industrial byproducts derived from fruit processing, their applications as ingredients to supplement baked foods, and their main biological activities on the consumer’s health. Research shows that agro-industrial fruit byproducts can be incorporated into various baked foods, increasing their fiber content, bioactive profile, and antioxidant capacity, in addition to other positive effects such as reducing their glycemic impact and inducing satiety, all while maintaining good sensory acceptance. Using agro-industrial fruit byproducts as food ingredients avoids discarding them; it can promote some bioactivities and maintain or even improve sensory acceptance. This contributes to incorporating edible material back into the processing chain as part of a circular bioeconomy, which can significantly benefit primary producers, processing industries (particularly smaller ones), and the final consumer.
Collapse
|
4
|
Mo Y, Ma J, Gao W, Zhang L, Li J, Li J, Zang J. Pomegranate Peel as a Source of Bioactive Compounds: A Mini Review on Their Physiological Functions. Front Nutr 2022; 9:887113. [PMID: 35757262 PMCID: PMC9218663 DOI: 10.3389/fnut.2022.887113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The production and consumption of pomegranates have always been increasing owing to their taste and nutrition. However, during fruit processing, a large number of by-products are produced, such as peels and seeds, which can lead to environmental pollution problems if not handled properly. The pomegranate peel takes up about 26-30% of the total weight, while it contains abundant bioactive substances. This paper carries out a mini review of the characterization and physiological functions of key bioactive compounds in pomegranate peel, comprehensively assessing their effects on human health. The overview summarizes the main phenolic substances in pomegranate peel, including tannins, flavonoids, and phenolic acids. Dietary fiber and other bioactive substances such as alkaloids, minerals, and vitamins are also mentioned. These components act as antioxidants by improving oxidative biomarkers and scavenging or neutralizing reactive oxygen species, further contributing to their extensive functions like anti-inflammatory, anti-cancer, antibacterial, and cardiovascular protection. Overall, it is envisaged that through the deeper understanding of bioactive compounds in pomegranate peel, the waste sources can be better reused for physiological applications.
Collapse
Affiliation(s)
- Yaxian Mo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiaqi Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentao Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Ürümqi, China
| | - Jiangui Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Ürümqi, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Qureshi WA, Vivekanandan B, Jayaprasath JA, Ali D, Alarifi S, Deshmukh K. Antimicrobial Activity and Characterization of Pomegranate Peel-Based Carbon Dots. JOURNAL OF NANOMATERIALS 2021. [DOI: 10.1155/2021/9096838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This investigation reports the use of agrowaste pomegranate peels as an economical source for the production of fluorescent carbon dots (C-dots) and their potential application as an antimicrobial agent. The carbon dots were prepared through low-temperature carbonization at 200°C for 120 min. The obtained C-dots were found to be small in size and exhibited blue luminescence at 350 nm. Further, the synthesized C-dots were characterized with the help of analytical instruments such as DLS, UV-visible, FT-IR, TEM, and fluorescence spectrophotometer. Antimicrobial activity of the C-dot PP was estimated by the agar diffusion method and MIC. S. aureus and K. pneumoniae are showing susceptibility towards C-dot PP when compared to the standard and showing a moderate activity against P. aeruginosa and resistance towards E. coli. The obtained C dot PPs were found to be around 5-9 nm in size confirmed from DLS analysis and supported by TEM. The synthesized C-dots were investigated to understand their microbial efficiency against pathogens and found to have antimicrobial efficiency. These results suggest that pomegranate peels are a potential source of carbon dots with antimicrobial efficiency.
Collapse
Affiliation(s)
- Waseem Akhtar Qureshi
- Cholistan Institute of Desert Studies, Baghdad–ul–Jadeed Campus, The Islamia University of Bahawalpur, Pakistan
| | - B. Vivekanandan
- Department of Chemical Engineering, Hindustan Institute of Technology and Science, 603103, Chennai, Tamil Nadu, India
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Kalim Deshmukh
- New Technologies - Research Center, University of West Bohemia, Plzeň 30100, Czech Republic
| |
Collapse
|
6
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
7
|
Pomegranate By-Products as Natural Preservative to Prolong the Shelf Life of Breaded Cod Stick. Molecules 2021; 26:molecules26082385. [PMID: 33923979 PMCID: PMC8073762 DOI: 10.3390/molecules26082385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022] Open
Abstract
This work evaluated the efficacy of pomegranate byproducts, specifically peel powder, as valid preservatives for food quality. Ready-to-cook cod sticks breaded with pomegranate peel powder were prepared. Shelf-life tests were conducted on breaded cod sticks during refrigerated storage (17 days) at 4 °C, monitoring the pH, microbiological and sensory quality. In addition, the nutritional quality of both the breaded and control samples was assessed. The results highlighted that active samples showed higher phenol and flavonoid content and higher antioxidant activity compared to the control fish, suggesting that pomegranate peel powder was responsible for a significant increase in cod stick nutritional quality. Furthermore, the cod stick active breading led to a delay in microbial growth without affecting the sensory properties; rather, it helped slow down the sensory attribute decline during the refrigerated storage. The data suggest that using pomegranate byproducts in breaded cod stick was effective in prolonging its shelf life, as well as improving its nutritional quality. Therefore, pomegranate peel powder can be considered as a potential resource as natural food preservative.
Collapse
|
8
|
Ferrentino G, Morozova K, Horn C, Scampicchio M. Extraction of Essential Oils from Medicinal Plants and their Utilization as Food Antioxidants. Curr Pharm Des 2020; 26:519-541. [PMID: 31965940 DOI: 10.2174/1381612826666200121092018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The use of essential oils is receiving increasing attention worldwide, as these oils are good sources of several bioactive compounds. Nowadays essential oils are preferred over synthetic preservatives thanks to their antioxidant and antimicrobial properties. Several studies highlight the beneficial effect of essential oils extracted from medicinal plants to cure human diseases such as hypertension, diabetes, or obesity. However, to preserve their bioactivity, the use of appropriate extraction technologies is required. METHODS The present review aims to describe the studies published so far on the essential oils focusing on their sources and chemical composition, the technologies used for their recovery and their application as antioxidants in food products. RESULTS The review has been structured in three parts. In the first part, the main compounds present in essential oils extracted from medicinal plants have been listed and described. In the second part, the most important technologies used for extraction and distillation, have been presented. In detail, conventional methods have been described and compared with innovative and green technologies. Finally, in the last part, the studies related to the application of essential oils as antioxidants in food products have been reviewed and the main findings discussed in detail. CONCLUSION In summary, an overview of the aforementioned subjects is presented by discussing the results of the most recent published studies.
Collapse
Affiliation(s)
- Giovanna Ferrentino
- Free University of Bolzano, Faculty of Science and Technology, Piazza Universita 1, 39100 Bolzano, Italy
| | - Ksenia Morozova
- Free University of Bolzano, Faculty of Science and Technology, Piazza Universita 1, 39100 Bolzano, Italy
| | - Christine Horn
- Free University of Bolzano, Faculty of Science and Technology, Piazza Universita 1, 39100 Bolzano, Italy
| | - Matteo Scampicchio
- Free University of Bolzano, Faculty of Science and Technology, Piazza Universita 1, 39100 Bolzano, Italy
| |
Collapse
|
9
|
Non-Extractable Polyphenols from Food By-Products: Current Knowledge on Recovery, Characterisation, and Potential Applications. Processes (Basel) 2020. [DOI: 10.3390/pr8080925] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Non-extractable polyphenols (NEPs), or bound polyphenols, are a significant fraction of polyphenols that are retained in the extraction residues after conventional aqueous organic solvent extraction. They include both high molecular weight polymeric polyphenols and low molecular weight phenolics attached to macromolecules. Current knowledge proved that these bioactive compounds possess high antioxidant, antidiabetic, and other biological activities. Plant-based food by-products, such as peels, pomace, and seeds, possess high amount of NEPs. The recovery of these valuable compounds is considered an effective way to recycle food by-products and mitigate pollution, bad manufacturing practice, and economic loss caused by the residues management. The current challenge to valorise NEPs from plant-based by-products is to increase the extraction efficiency with proper techniques, choose appropriate characterising methods, and explore potential functions to use in some products. Based on this scenario, the present review aims to summarise the extraction procedure and technologies applied to recover NEPs from plant-based by-products. Furthermore, it also describes the main techniques used for the characterisation of NEPs and outlines their potential food, pharmaceutical, nutraceutical, and cosmetic applications.
Collapse
|
10
|
Polyphenol Extraction by Different Techniques for Valorisation of Non-Compliant Portuguese Sweet Cherries towards a Novel Antioxidant Extract. SUSTAINABILITY 2020. [DOI: 10.3390/su12145556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, there is special interest in the recovery of polyphenols from non-compliant fruits that have no market value; efforts to find value-added solutions for these food areas are a key option for a sustainable bio-economy. Saco cherries are a traditional Portuguese cherry variety, and although they are a nutritionally important food, rich in powerful dietary polyphenols, significant amounts of these cherries are not sold due to their small size. In this context, this work aimed to select the best method to produce novel antioxidant polyphenol-rich extracts from low calibre and non-compliant Saco cherries. Based on the results, microwaves-assisted extraction (MAE) allowed us to obtain a polyphenol-rich extract with a high antioxidant capacity (50.46 ± 1.58 mg Trolox equivalent (TE)/g dry extract (DE) by oxygen radical absorbance capacity (ORAC), 10.88 ± 0.38 mg ascorbic acid equivalent (AA)/g DE by 2-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and 9.58 ± 0.42 mg TE/g DE by 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and a high content of polyphenols, namely, hydroxycinnamic acids (neochlorogenic and p-coumaric acids) and anthocyanins (cyanidin-3-rutinoside and cyanidin-3-glucoside), compared with those of conventional extractions with low and high temperature and ultrasound-assisted extraction. The antioxidant extract produced from MAE could be a new alternative for the valorisation of non-compliant cherries since these extracts proved to be a functional ingredient due to the high content of antioxidants, which are linked to the prevention of diseases.
Collapse
|
11
|
Barcelos MCS, Ramos CL, Kuddus M, Rodriguez-Couto S, Srivastava N, Ramteke PW, Mishra PK, Molina G. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol Lett 2020; 42:1799-1827. [DOI: 10.1007/s10529-020-02957-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
|
12
|
Dilucia F, Lacivita V, Conte A, Del Nobile MA. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020; 9:E857. [PMID: 32630106 PMCID: PMC7404480 DOI: 10.3390/foods9070857] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Fruit and vegetable by-products are the most abundant food waste. Industrial processes such as oil, juice, wine or sugar production greatly contribute to this amount. These kinds of residues are generally thrown away in form of leftover and used as feed or composted, but they are a great source of bioactive compounds like polyphenols, vitamins or minerals. The amount of residue with potential utilization after processing has been estimated in millions of tons every year. For this reason, many researchers all around the world are making great efforts to valorize and reuse these valuable resources. Of greatest importance is the by-product potential to enhance the properties of packaging intended for food applications. Therefore, this overview collects the most recent researches dealing with fruit and vegetable by-products used to enhance physical, mechanical, antioxidant and antimicrobial properties of packaging systems. Recent advances on synthetic or bio-based films enriched with by-product components are extensively reviewed, with an emphasis on the role that by-product extracts can play in food packaging materials.
Collapse
Affiliation(s)
| | | | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71121 Foggia, Italy; (F.D.); (V.L.); (M.A.D.N.)
| | | |
Collapse
|
13
|
Arakaki DG, Samúdio dos Santos V, de Melo EP, Pereira H, Silva Figueiredo P, Rodrigues Cortês M, Alexandre Carollo C, de Oliveira LCS, Tschinkel P, Reis F, Souza I, Rosa R, Sanches F, Freitas dos Santos E, Aragão do Nascimento V. Canjiqueira Fruit: Are We Losing the Best of It? Foods 2020; 9:foods9040521. [PMID: 32326266 PMCID: PMC7231018 DOI: 10.3390/foods9040521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fruits and byproducts are valuable sources of nutrients and bioactive compounds, which are associated with a decreased risk of developing several diseases, such as cancer, inflammation, cardiovascular diseases, and Alzheimer’s. The fruits of canjiqueira (Byrsonima cydoniifolia) are already exploited as a food resource, while the seeds are discarded. This study aimed at showing the potential of the whole fruit of canjiqueira. Elemental characterization was performed on ICP OES, while thermal stability was assessed on thermogravimetry. The determination of the fatty acid profile was carried out on gas chromatography and bioactive compound identification using liquid chromatography and mass spectrometry. Results show that both parts of canjiqueira fruit are a source of various minerals, such as Ca, Cu, Fe, K, Mg, and Mn while the seed only is a good source for Zn. Oleic and linoleic acids are the main compounds in pulp and seed. The thermal stability of seed oil is superior to pulp oil, while piceatannol concentration is higher in seed than pulp. All parts of canjiqueira fruit may be used as a strategy to address nutrition issues and are valuable ingredients to prospective food products.
Collapse
Affiliation(s)
- Daniela G. Arakaki
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
- Correspondence: (D.G.A.); (V.A.d.N.)
| | - Vanessa Samúdio dos Santos
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (V.S.d.S.); (C.A.C.)
| | - Elaine Pádua de Melo
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Hugo Pereira
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
| | - Mário Rodrigues Cortês
- Chemistry Institute, Federal Universityof Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (M.R.C.); (L.C.S.d.O.)
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (V.S.d.S.); (C.A.C.)
| | | | - Paula Tschinkel
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Francisco Reis
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Igor Souza
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Rafaela Rosa
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
| | - Fabiane Sanches
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil;
| | - Elisvânia Freitas dos Santos
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Midwest Region of Brazil, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil; (E.P.d.M.); (H.P.); (P.S.F.); (P.T.); (F.R.); (I.S.); (R.R.); (E.F.d.S.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil
- Correspondence: (D.G.A.); (V.A.d.N.)
| |
Collapse
|
14
|
Bora H, Kamle M, Mahato DK, Tiwari P, Kumar P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. PLANTS (BASEL, SWITZERLAND) 2020; 9:E357. [PMID: 32168877 PMCID: PMC7154898 DOI: 10.3390/plants9030357] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Citrus is a genus belonging to the Rutaceae family and includes important crops like orange, lemons, pummelos, grapefruits, limes, etc. Citrus essential oils (CEOs) consist of some major biologically active compounds like α-/β-pinene, sabinene, β-myrcene, d-limonene, linalool, α-humulene, and α-terpineol belonging to the monoterpenes, monoterpene aldehyde/alcohol, and sesquiterpenes group, respectively. These compounds possess several health beneficial properties like antioxidant, anti-inflammatory, anticancer, etc., in addition to antimicrobial properties, which have immense potential for food applications. Therefore, this review focused on the extraction, purification, and detection methods of CEOs along with their applications for food safety, packaging, and preservation. Further, the concerns of optimum dose and safe limits, their interaction effects with various food matrices and packaging materials, and possible allergic reactions associated with the use of CEOs in food applications were briefly discussed, which needs to be addressed in future research along with efficient, affordable, and "green" extraction methods to ensure CEOs as an ecofriendly, cost-effective, and natural alternative to synthetic chemical preservatives.
Collapse
Affiliation(s)
- Himashree Bora
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Hwy, Burwood, VIC 3125, Australia;
| | - Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India; (H.B.); (M.K.)
| |
Collapse
|
15
|
Isla MI, Cattaneo F, Orqueda ME, Moreno MA, Pérez J, Rodríguez IF, Uriburu FMC, Torres S, Zampini IC. Potential Application of Native Fruit Wastes from Argentina as Nonconventional Sources of Functional Ingredients. APPLIED ENVIRONMENTAL SCIENCE AND ENGINEERING FOR A SUSTAINABLE FUTURE 2020. [DOI: 10.1007/978-3-030-39208-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Fierascu RC, Fierascu I, Avramescu SM, Sieniawska E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019; 24:E4212. [PMID: 31757027 PMCID: PMC6930540 DOI: 10.3390/molecules24234212] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Large amounts of agro-industrial waste are being generated each year, leading to pollution and economic loss. At the same time, these side streams are rich source of active compounds including antioxidants. Recovered compounds can be re-utilized as food additives, functional foods, nutra-/pharmaceuticals, cosmeceuticals, beauty products, and bio-packaging. Advanced extraction techniques are promising tools to recover target compounds such as antioxidants from agro-industrial side streams. Due to the disadvantages of classical extraction techniques (such as large amounts of solvents, increased time of extraction, large amounts of remaining waste after the extraction procedure, etc.), and advanced techniques emerged, in order to obtain more efficient and sustainable processes. In this review paper aspects regarding different modern extraction techniques related to recovery of antioxidant compounds from wastes generated in different industries and their applications are briefly discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 Mihail Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Trigo JP, Alexandre EMC, Saraiva JA, Pintado ME. High value-added compounds from fruit and vegetable by-products – Characterization, bioactivities, and application in the development of novel food products. Crit Rev Food Sci Nutr 2019; 60:1388-1416. [DOI: 10.1080/10408398.2019.1572588] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- João P. Trigo
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Elisabete M. C. Alexandre
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Jorge A. Saraiva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Manuela E. Pintado
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
18
|
Jablonský M, Škulcová A, Malvis A, Šima J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J Biotechnol 2018; 282:46-66. [DOI: 10.1016/j.jbiotec.2018.06.349] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
19
|
Giacometti J, Bursać Kovačević D, Putnik P, Gabrić D, Bilušić T, Krešić G, Stulić V, Barba FJ, Chemat F, Barbosa-Cánovas G, Režek Jambrak A. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res Int 2018; 113:245-262. [PMID: 30195519 DOI: 10.1016/j.foodres.2018.06.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023]
Abstract
Market interest in aromatic plants from the Mediterranean is continuously growing mainly due to their medicinal and bioactive compounds (BACs) with other valuable constituents from essential oils (EOs). From ancient times, these plants have been important condiments for traditional Mediterranean cuisine and remedies in folk medicine. Nowadays, they are considered as important factors for food quality and safety, due to prevention of various deteriorative factors like oxidations and microbial spoilage. EOs have different therapeutic benefits (e.g. antioxidant, anti-inflammatory, antimicrobial, and antifungal), while BACs mostly affect nutritive, chemical, microbiological, and sensory quality of foods. Currently, many plant extracts are used for functional (healthy) foods, which additionally fuels consumer and industrial interest in sustainable and non-toxic routes for their production. EO yields from dried plants are below 5%. Their extraction is strongly dependent on the hydrophobic or lipophilic character of target molecules, hence the common use of organic solvents. Similarly, BACs encompass a wide range of substances with varying structures as reflected by their different physical/chemical qualities. Thus, there is a need to identify optimal non-toxic extraction method(s) for isolation/separation of EO/BCs from plants. Various innovative non-thermal extractions (e.g. ultrasound-, high-pressure-, pulsed electric fields assisted extraction, etc.) have been proposed to overcome the above mentioned limitations. These techniques are "green" in concept, as they are shorter, avoid toxic chemicals, and are able to improve extract yields and quality with reduced consumption of energy and solvents. This research provides an overview of such extractions of both BAC and EOs from Mediterranean herbs, sustained by innovative and non-conventional energy sources.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Domagoj Gabrić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tea Bilušić
- Department for Food Technology and Biotechnology, University of Chemistry and Technology, Ruđera Boškovića 35, 21 000 Split, Croatia
| | - Greta Krešić
- Department of Food and Nutrition, Faculty of Tourism and Hospitality Management, University of Rijeka, Primorska 42, 51410 Opatija
| | - Višnja Stulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Farid Chemat
- Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, GREEN Team Extraction, 84000 Avignon Cedex, France
| | - Gustavo Barbosa-Cánovas
- Center for NonThermal Processing of Food, Biological Systems Engineering, Washington State University, L.J. Smith Hall 220, Pullman, WA 99164-6120, USA
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Safarik I, Baldikova E, Prochazkova J, Safarikova M, Pospiskova K. Magnetically Modified Agricultural and Food Waste: Preparation and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2538-2552. [PMID: 29470915 DOI: 10.1021/acs.jafc.7b06105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The annual food and agricultural waste production reaches enormous numbers. Therefore, an increasing need to valorize produced wastes arises. Waste materials originating from the food and agricultural industry can be considered as functional materials with interesting properties and broad application potential. Moreover, using an appropriate magnetic modification, smart materials exhibiting a rapid response to an external magnetic field can be obtained. Such materials can be easily and selectively separated from desired environments. Magnetically responsive waste derivatives of biological origins have already been prepared and used as efficient biosorbents for the isolation and removal of both biologically active compounds and organic and inorganic pollutants and radionuclides, as biocompatible carriers for the immobilization of diverse types of (bio)molecules, cells, nano- and microparticles, or (bio)catalysts. Potential bactericidal, algicidal, or anti-biofilm properties of magnetic waste composites have also been tested. Furthermore, low cost and availability of waste biomaterials in larger amounts predetermine their utilization in large-scale processes.
Collapse
Affiliation(s)
- Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, Institute of Soil Biology (ISB) , Czech Academy of Sciences (CAS) , Na Sadkach 7 , 370 05 Ceske Budejovice , Czech Republic
- Regional Centre of Advanced Technologies and Materials , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Eva Baldikova
- Department of Nanobiotechnology, Biology Centre, Institute of Soil Biology (ISB) , Czech Academy of Sciences (CAS) , Na Sadkach 7 , 370 05 Ceske Budejovice , Czech Republic
| | - Jitka Prochazkova
- Department of Nanobiotechnology, Biology Centre, Institute of Soil Biology (ISB) , Czech Academy of Sciences (CAS) , Na Sadkach 7 , 370 05 Ceske Budejovice , Czech Republic
| | - Mirka Safarikova
- Department of Nanobiotechnology, Biology Centre, Institute of Soil Biology (ISB) , Czech Academy of Sciences (CAS) , Na Sadkach 7 , 370 05 Ceske Budejovice , Czech Republic
| | - Kristyna Pospiskova
- Regional Centre of Advanced Technologies and Materials , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|