1
|
Zulli R, Chen Z, Santi F, Trych U, Szczepańska-Stolarczyk J, Cywińska-Antonik M, Andrigo P, Amenta M, Ballistreri G, Platania GM, Timpanaro N, Tortorelli SA, Benmechernene Z, Ozdemir Y, Zambon A, Fabroni S, Marszalek K, Spilimbergo S. Effect of high-pressure carbon dioxide combined with modified atmosphere packaging on the quality of fresh-cut squash during storage. Food Chem 2025; 472:142882. [PMID: 39837182 DOI: 10.1016/j.foodchem.2025.142882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
The study evaluated the application of a novel high-pressure microbial inactivation method combining dense carbon dioxide with modified atmosphere packaging on organic fresh-cut squash (Cucurbita moschata). Approximately 4 g or 32 g of squash was packed in plastic pouches filled with CO2 to test two different gas-to-product ratios and treated with the high-pressure method at previously optimized process conditions (45 °C, 6.0 MPa and 40 min). The products were then stored for 21 days at 4 °C and assessed for enzymatic activity, product quality, sugar content, bioaccessibility (polyphenols, DPPH antioxidant activity, and carotenoids), and sensory acceptance, with products packed in air and CO2 serving as controls. The high-pressure treatment effectively inactivated inoculated E. coli to undetectable levels (inactivation >3.63 ± 0.53 Log CFU/g) and reduced the activity of the browning-responsible enzymes up to 50 %. During the shelf life, treated samples exhibited significantly higher scavenging activity for DPPH, ABTS, OH, O2-, and NO compared to non-treated samples, with minor exceptions at a high gas-to-product ratio. Additionally, treated samples showed increased levels of glucose and fructose and a comparable or higher bioaccessibility of antioxidants with respect to the products packed in air or in CO2. Sensory evaluation indicated that the treatment enhanced color and smell appreciation among panelists, demonstrating the potential of this method to improve both safety and quality of fresh-cut squash.
Collapse
Affiliation(s)
- Riccardo Zulli
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
| | - Zhe Chen
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532 Warsaw, Poland
| | - Fabio Santi
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Urszula Trych
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532 Warsaw, Poland
| | - Justyna Szczepańska-Stolarczyk
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532 Warsaw, Poland
| | - Magdalena Cywińska-Antonik
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532 Warsaw, Poland
| | - Pietro Andrigo
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Margherita Amenta
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy
| | - Gabriele Ballistreri
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy
| | - Giusy Maria Platania
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy
| | - Nicolina Timpanaro
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy
| | - Susanna Aurora Tortorelli
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy
| | - Zineb Benmechernene
- Laboratory of Applied Microbiology, Department of Biology, Faculty of Natural Sciences and Life, University of Oran, 1 Ahmed Ben Bella, Oran 31100, Algeria
| | - Yasin Ozdemir
- Atatürk Horticultural Central Research Institute, Suleyman Bey Mh., 77100 Merkez/Yalova, Yalova, Türkiye
| | - Alessandro Zambon
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simona Fabroni
- Council for Agricultural Research and Economics (CREA), Research Center for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy
| | - Krystian Marszalek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532 Warsaw, Poland.
| | - Sara Spilimbergo
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
| |
Collapse
|
2
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
3
|
Shankar S, Mohanty AK, DeEll JR, Carter K, Lenz R, Misra M. Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. NPJ SUSTAINABLE AGRICULTURE 2024; 2:25. [PMID: 39759422 PMCID: PMC11698397 DOI: 10.1038/s44264-024-00029-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/08/2024] [Indexed: 01/07/2025]
Abstract
This review will provide new ideas for preserving fruits and decreasing fruit waste. This review outlines and evaluates research concerning postharvest fruit preservation employing antimicrobial strategies, which involve the integration of biological control alongside physical or chemical methods. The concurrent deployment of two or three of these techniques, particularly biological approaches, has demonstrated enhanced and synergistic antimicrobial outcomes in practical scenarios.
Collapse
Affiliation(s)
- Shiv Shankar
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Amar K. Mohanty
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| | - Jennifer R. DeEll
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Kathryn Carter
- Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, 1283 Blueline Road, Simcoe, ON Canada
| | - Ruben Lenz
- Advanced Micro Polymers Inc., Steeles Ave E, Milton, ON Canada
| | - Manjusri Misra
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
- School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON Canada
| |
Collapse
|
4
|
Zhang B, Lin X, Zhang X, Yi X, Ma S, Ding Y. Research and design of multiple gas mixing system in modified atmosphere packaging. Sci Rep 2024; 14:30080. [PMID: 39627411 PMCID: PMC11614896 DOI: 10.1038/s41598-024-81366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Despite the abundant production of fruits and vegetables in Xinjiang, there is an increasing trend in waste rates. Gas-controlled packaging techniques are employed post-harvest to enhance freshness and extend shelf life. However, the multi-gas mixing system at the core of this equipment often encounters challenges such as insufficient stability, limited precision, high costs, and inadequate intelligence. In this context, we have developed and designed a multi-gas mixing system for gas-conditioned packaging. The system integrates Internet of Things technology, uses a programmable controller as the core, proposes a ternary gas distribution model based on the ideal gas equation and Dalton's law of partial pressures, and utilizes RS-485 bus, TCP/IP protocol, among others. This ensures communication between the equipment and data transmission with the cloud server while enabling remote control of the gas mixing and blending process via a mobile phone terminal. The system runs stably through testing, with the average relative deviations of CO2 and O2 gas concentrations being 0.86% and 0.72%, respectively. This fulfills the technical prerequisites for achieving a gas concentration precision of less than 1%, addressing challenges related to inadequate precision in gas blending, unstable performance, and limited visual representation. Moreover, it significantly reduces equipment costs and operational complexities while serving as a valuable reference for advancing multivariate gas mixing and blending technology in Xinjiang's fruit and vegetable gas-conditioned packaging.
Collapse
Affiliation(s)
- Bin Zhang
- College of Mechanical and Electrical Engineering, Tarim University, Alar, 843300, China
- Department of Xinjiang Uygur Autonomous Region, Modern Agricultural Engineering Key Laboratory at Universities of Education, Tarim University, Alar, 843300, China
| | - Xiaodan Lin
- College of Mechanical and Electrical Engineering, Tarim University, Alar, 843300, China.
- Department of Xinjiang Uygur Autonomous Region, Modern Agricultural Engineering Key Laboratory at Universities of Education, Tarim University, Alar, 843300, China.
| | - Xuemin Zhang
- Engineering college, Agricultural University of China, Beijing, 100083, China
| | - Xiaokang Yi
- College of Mechanical and Electrical Engineering, Tarim University, Alar, 843300, China
- Department of Xinjiang Uygur Autonomous Region, Modern Agricultural Engineering Key Laboratory at Universities of Education, Tarim University, Alar, 843300, China
| | - Shaohui Ma
- College of Mechanical and Electrical Engineering, Tarim University, Alar, 843300, China
- Department of Xinjiang Uygur Autonomous Region, Modern Agricultural Engineering Key Laboratory at Universities of Education, Tarim University, Alar, 843300, China
| | - Yu Ding
- College of Mechanical and Electrical Engineering, Tarim University, Alar, 843300, China
- Department of Xinjiang Uygur Autonomous Region, Modern Agricultural Engineering Key Laboratory at Universities of Education, Tarim University, Alar, 843300, China
| |
Collapse
|
5
|
Kukrić TN, Iličić RM, Jurić TM, Uka DB, Bagi FF, Đurić SS, Popović BM. Antifungal efficacy and biofumigation potential of hydrophobic deep eutectic solvents: Postharvest treatment against Monilinia fructicola and Botrytis Cinerea. World J Microbiol Biotechnol 2024; 40:393. [PMID: 39581911 DOI: 10.1007/s11274-024-04201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Hydrophobic Deep Eutectic Solvents (HDES), as a subclass of Natural Deep Eutectic Solvents (NADES), present a green-chemistry alternative to toxic chemicals. As HDES are based on terpenoids, these solvents could potentially be effective antifungal agents against phytopathogens Monilinia fructicola and Botrytis cinerea that frequently cause diseases in sweet cherry fruit. To contribute to the disease prevention and management goals, as a part of this study, 30 different HDES were tested in the vapor phase, at identical concentrations of 25%, 50%, and 100%. In vitro experiments were conducted on Potato Dextrose Agar medium (PDA), while in planta experiments were carried out in hermetically sealed containers with inoculated sweet cherry fruits. All tested HDES demonstrated efficacy in suppressing the growth of M. fructicola colonies (66 - 100%) and B. cinerea colonies (37 - 100%). According to the Area Under the Disease Progress Curve (AUDPC), all HDES exhibited high efficacy in preventing disease occurrence in cherry fruits by the tested phytopathogens. This research provides the first insights into the antifungal potential of HDES in the vapor phase, with promising applications as biofumigants that minimize harmful impacts on the food - human - environment complex.
Collapse
Affiliation(s)
- Teodora N Kukrić
- Chemistry laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000, Serbia.
| | - Renata M Iličić
- Laboratory of Phytopathology, Department for Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000, Serbia
| | - Tatjana M Jurić
- Chemistry laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000, Serbia
| | - Denis B Uka
- Chemistry laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000, Serbia
| | - Ferenc F Bagi
- Laboratory of Phytopathology, Department for Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000, Serbia
| | - Simonida S Đurić
- Laboratory of Microbiology, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi, Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000, Serbia
| | - Boris M Popović
- Chemistry laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000, Serbia
| |
Collapse
|
6
|
Shagun S, Bains A, Sridhar K, Dhull SB, Patil S, Gupta VK, Chawla P, Sharma M. A comprehensive review on impact of post-harvest management and treatment practices on the quality of garlic (Allium sativum L) during storage. SCIENTIA HORTICULTURAE 2024; 337:113586. [DOI: 10.1016/j.scienta.2024.113586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
He X, Wang L, Tao J, Han L, Wang H, Zhao X, Zuo J, Zheng Y. High‑oxygen-modified atmospheric packaging delays flavor and quality deterioration in fresh-cut broccoli. Food Chem 2024; 450:139517. [PMID: 38703670 DOI: 10.1016/j.foodchem.2024.139517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The purpose of this study was to investigate the impact of high‑oxygen-modified atmospheric packaging (HOMAP) on aroma changes in fresh-cut broccoli during storage and to explore its regulatory mechanisms. The results showed that HOMAP reduced the levels of undesirable aroma substances hexanoic acid, isobutyric acid, cyclopentanone and increased glucosinolate accumulation by inhibiting the expression of arogenate/prephenate dehydratase (ADT), bifunctional aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase (PAT), thiosulfate/3-mercaptopyruvate Transferase (TST) to reduce the odor of fresh-cut broccoli. HOMAP inhibited the expression of respiratory metabolism related genes 6-phosphate fructokinase 1 (PFK), pyruvate kinase (PK), and NADH-ubiquinone oxidoreductase chain 6 (ND6). In HOMAP group, the low expression of phospholipase C (PLC), phospholipase A1 (PLA1), linoleate 9S-lipoxygenase 1 (LOX1) related to lipid metabolism and the high expression of naringenin 3-dioxygenase (F3H), trans-4-Hydroxycinnamate (C4H), glutaredoxin 3 (GRX3), and thioredoxin 1 (TrX1) in the antioxidant system maintained membrane stability while reducing the occurrence of membrane lipid peroxidation.
Collapse
Affiliation(s)
- Xuelian He
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056107, China
| | - Lihong Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056107, China
| | - Jiejie Tao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Lichun Han
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056107, China
| | - Hongwei Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
8
|
Venkatesan U, Muniyan R. Review on the extension of shelf life for fruits and vegetables using natural preservatives. Food Sci Biotechnol 2024; 33:2477-2496. [PMID: 39144196 PMCID: PMC11319680 DOI: 10.1007/s10068-024-01602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 08/16/2024] Open
Abstract
Fruits and vegetables are important for the nutrition and health of individuals. They are highly perishable in nature because of their susceptibility to microbial growth. Foodborne pathogens create a significant problem for consumers, food businesses, and food safety. Postharvest factors, including transportation, environment, and preservation techniques, cause a reduction in product quality. The present world is using synthetic preservatives, which have negative impacts on consumer health. Food safety and demand for healthy foods among consumers, the scientific community, and the food industry resulted in the exploitation of natural preservatives, which play an important role in their effectiveness, prolonged shelf life, and safety. Natural preservatives include plants, animals, and microbiological sources with polymers to extend shelf life, improve quality, and enhance food safety. This review specifically focuses on mechanism of action of natural preservatives, spoilage of fruit and vegetables, the importance of edible film and coating on fruits and vegetables.
Collapse
Affiliation(s)
- Uma Venkatesan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Rajiniraja Muniyan
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
9
|
Zhou C, Li L, Li D, Zhang R, Hu S, Zhong K, Yan B. Hyaluronic acid-based multifunctional bio-active coating integrated with cinnamaldehyde/hydroxypropyl-β-cyclodextrin inclusion complex for fruit preservation. Int J Biol Macromol 2024; 271:132605. [PMID: 38788869 DOI: 10.1016/j.ijbiomac.2024.132605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Natural preservatives such as cinnamaldehyde (CIN) are garnering increasing interest to replace their synthetic counterparts in maintaining fruit freshness and safety. However, their long-term effectiveness and widespread application have been greatly limited due to high volatility and potent aroma. To address these challenges, we developed a viable and simple strategy to prepare a multifunctional active coating for fruit preservation by incorporating host-guest inclusion complex of CIN and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) CIN@HP-β-CD into hyaluronic acid (HA), a natural polysaccharide with exceptional film-forming properties. The as-prepared HA/CIN@HP-β-CD coatings exhibited universal surface affinity, excellent antimicrobial performance, and satisfactory antioxidant properties with no potential toxicity. Release kinetic studies have demonstrated that CIN in the coating is continuously and slowly released. Furthermore, freshness preservation experiments on bananas and fresh-cut apples demonstrated that the developed coating is effective in preserving the color of fruit, decreasing the weight loss rate, preventing the microorganism's growth, and significantly extending the period of freshness, exhibiting the potential for application in fruit preservation.
Collapse
Affiliation(s)
- Chaomei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dong Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 643002, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Shaodong Hu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Kai Zhong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Liu R, Xie R, Zhu X, Huang C. Preparation and application of chlorine dioxide gas slow-release fresh-keeping card based on polylactic acid. Int J Biol Macromol 2024; 263:130273. [PMID: 38368990 DOI: 10.1016/j.ijbiomac.2024.130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Blueberries are highly perishable after harvest, so a simple preservation method is needed to extend the shelf life of blueberries. In this study, sodium chlorite-loaded sepiolite was added to polylactide solution with tartaric acid to create a ClO2 gas slow-release fresh-keeping card. The fresh-keeping card absorbs moisture in the air, which causes tartaric acid to enter the sepiolite and react with sodium chlorite to release ClO2 gas slowly. The study investigated the impact of fresh-keeping cards on the quality attributes of blueberries, including appearance, decay rate, ethylene release rate, respiration rate, hardness, ascorbic acid content, and anthocyanin concentration. Low-field nuclear magnetic technology was used to analyze the water state and distribution of blueberries during storage. The results showed that the ClO2 gas released by the fresh-keeping card can destroy ethylene in the air and kill microorganisms in blueberries, thereby delaying fruit decay.
Collapse
Affiliation(s)
- Ren Liu
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Ruibang Xie
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Xuhao Zhu
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, Nanning, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, China.
| |
Collapse
|
11
|
Rashed NM, Memon SA, Turki SMA, Shalaby TA, El-Mogy MM. An analysis of conventional and modern packaging approaches for cut flowers: a review article. FRONTIERS IN PLANT SCIENCE 2024; 15:1371100. [PMID: 38601313 PMCID: PMC11004386 DOI: 10.3389/fpls.2024.1371100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Fresh-cut flowers are considered to be one of the most delicate and challenging commercial crops. It is important to take into consideration how to minimize loss during storage and transportation when preserving cut flowers. Many impinging (bad effect) forces can interact to shorten the flowers' vase life. In the flower industry, effective methods need to be developed to extend freshly cut flowers' life. Fresh-cut flowers' vase life can be shortened by a variety of interlocking causes. The flower industry must develop new techniques to extend the flowers' vase lifespan. This review provides comprehensive, up-to-date information on classical, modified atmosphere packaging (MAP), and controlled atmosphere packaging (CAP) displays. According to this review, a promising packaging technique for fresh flowers can be achieved through smart packaging. A smart package is one that incorporates new technology to increase its functionality. This combines active packaging, nanotechnology, and intelligence. This technology makes it easier to keep an eye on the environmental variables that exist around the packaged flowers to enhance their quality. This article offers a comprehensive overview of creative flower-saving packaging ideas that reduce flower losses and assist growers in handling more effectively their flower inventory. To guarantee the quality of flowers throughout the marketing chain, innovative packaging techniques and advanced packaging technologies should be adopted to understand various package performances. This will provide the consumer with cut flowers of standard quality. Furthermore, sustainable packaging is achieved with circular packaging. We can significantly reduce packaging waste's environmental impact by designing reused or recyclable packaging.
Collapse
Affiliation(s)
- Nahed M. Rashed
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Horticulture Department, Faculty of Agriculture. Damietta University, Damietta, Egypt
| | - Saba Ambreen Memon
- Horticulture Department, Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Saleh M. Al Turki
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohamed M. El-Mogy
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Rashid F, Ahmed Z, Ferheen I, Mehmood T, Liaqat S, Ghoneim MM, Rahman A. Effect of fenugreek and flaxseed polysaccharide-based edible coatings on the quality attributes and shelf life of apple fruit during storage. Food Sci Nutr 2024; 12:2093-2103. [PMID: 38455192 PMCID: PMC10916592 DOI: 10.1002/fsn3.3909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024] Open
Abstract
The present study was designed to explore the potential of fenugreek and flaxseed polysaccharide-based edible coatings to enhance the postharvest storage life of apple fruit. The experimental plan involved the preparation of five different coating formulations, which were subsequently applied to the fruit. The coated fruit was then stored at a temperature of 25 ± 2°C for a duration of 35 days. The effects of these coatings on physicochemical and biochemical attributes (weight loss, firmness, acidity, pH, sugar content, antioxidant activity, microbial growth, and sensory properties) of coated and uncoated samples were evaluated at regular intervals: 0, 7, 14, 21, 28, and 35 days of storage. The experimental results revealed a significant difference (p ≤ .05) in the physicochemical parameters of uncoated and coated apple at different storage times. The coated apple fruits showed significantly (p ≤ .05) lower weight loss, pH, total sugars, total soluble solids, and maximum retention of ascorbic acid, firmness, acidity, and antioxidant contents, leading to enhanced organoleptic properties. The application of edible coatings extended the shelf-life of the apples by inhibiting microbiological spoilage without substantial impact on sensory and nutritional properties. Based on these results, it is concluded that the edible coating formulation labeled T 1 (containing 2.5 g fenugreek polysaccharide and 1.5 g flax polysaccharide) effectively preserved the valuable physicochemical and organoleptic characteristics of the apple fruit throughout the storage period.
Collapse
Affiliation(s)
- Farhat Rashid
- Institute of Food Science and Nutrition (IFSN)University of SargodhaSargodhaPakistan
| | - Zaheer Ahmed
- Department of Nutritional Sciences & Environmental DesignAllama Iqbal Open University (AIOU)IslamabadPakistan
| | - Ifra Ferheen
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Tahir Mehmood
- Department of Food Science and Technology, Faculty of Agriculture and EnvironmentThe Islamia University of BahawalpurBahawalpurPakistan
| | - Saba Liaqat
- Department of Human Nutrition and Dietetics, School of Food and Agricultural SciencesUniversity of Management and TechnologyLahorePakistan
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of PharmacyAl‐Azhar UniversityCairoEgypt
| | - Afzal Rahman
- Department of Food Technology and Rural Industries, Faculty of Agricultural Engineering and TechnologyBangladesh Agricultural UniversityDhakaBangladesh
| |
Collapse
|
13
|
Tosif MM, Bains A, Sridhar K, Inbaraj BS, Ali N, Dikkala PK, Kumar A, Chawla P, Sharma M. Fabrication and Characterization of Taro ( Colocasia esculenta)-Mucilage-Based Nanohydrogel for Shelf-Life Extension of Fresh-Cut Apples. Gels 2024; 10:95. [PMID: 38391425 PMCID: PMC10888338 DOI: 10.3390/gels10020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Taro mucilage is a cost-effective, eco-friendly, and water-soluble edible viscous polysaccharide, which possesses diverse techno-functional properties including gelling and anti-microbial. Therefore, the objective of this study was to formulate and evaluate the efficacy of taro mucilage nanohydrogel for the shelf-life enhancement of fresh-cut apples. Taro mucilage was extracted using cold water extraction, and the yield of mucilage was found to be 2.95 ± 0.35% on a dry basis. Different concentrations of mucilage (1, 2, 3, 4, and 5%) were used to formulate the nanohydrogel. A smaller droplet size of 175.61 ± 0.92 nm was observed at 3% mucilage, with a zeta potential of -30.25 ± 0.94 mV. Moreover, FTIR data of nanohydrogel revealed the functional groups of various sugars, uronic acids, and proteins. Thermal analysis of nanohydrogel exhibited weight loss in three phases, and maximum weight loss occurred from 110.25 °C to 324.27 °C (65.16%). Nanohydrogel showed shear-thinning fluid or pseudo-plastic behavior. Coating treatment of nanohydrogel significantly reduced the weight loss of fresh-cut apples (8.72 ± 0.46%) as compared to the control sample (12.25 ± 0.78%) on the 10th day. In addition, minor changes were observed in the pH for both samples during the 10 days of storage. Titrable acidity of control fresh-cut apples measured 0.22 ± 0.05% on day 0, rising to 0.42 ± 0.03% on the 10th day, and for coated fresh-cut apples, it was observed to be 0.24 ± 0.07% on the 0th day and 0.36 ± 0.06% on 10th day, respectively. Furthermore, the total soluble solids (TSS) content of both control and coated fresh-cut apples measured on the 0th day was 11.85 ± 0.65% and 12.33 ± 0.92%, respectively. On the 10th day, these values were significantly increased (p < 0.05) to 16.38 ± 0.42% for the control and 14.26 ± 0.39% for the coated sliced apples, respectively. Nanohydrogel-coated fresh-cut apples retained antioxidant activity and vitamin C content as compared to the control sample. Taro mucilage nanohydrogel-based edible coating showed distinct anti-microbial activity against psychrotrophic, aerobic, and yeast molds. In summary, taro mucilage nanohydrogel can be used as a cost-effective natural coating material for the shelf-life enhancement or freshness maintenance of fresh-cut apples.
Collapse
Affiliation(s)
- Mansuri M Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | | | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Praveen Kumar Dikkala
- College of Food Science and Technology, Acharya NG Ranga Agricultural University, Pulivendula 516390, India
| | - Ankur Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| |
Collapse
|
14
|
Demircan B, Velioglu YS. Control of Browning, Enzyme Activity, and Quality in Stored Fresh-cut Fruit Salads through Chitosan Coating Enriched with Bergamot Juice Powder. Foods 2024; 13:147. [PMID: 38201175 PMCID: PMC10779034 DOI: 10.3390/foods13010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, fresh-cut fruit salads composed of apples, pears, kiwis, and pineapples were stored at +4 °C for 18 days under distinct conditions: non-coated (NC), chitosan-coated (CH), and bergamot juice powder extract-enriched chitosan-coated (CHBE). Storage endpoint decay percentages were as follows: NC group: 100%, CH group: 26.67-53.3%, CHBE group: 13.33-26.67%. CHBE had the highest moisture content (87.05-89.64%), soluble solids (12.40-13.26%), and chroma values (2.35-6.60). CHBE and NC groups had 2.10% and 6.61% weight loss, respectively. The NC group had the highest polyphenol oxidase activity (19.48 U mL-1) and browning index (0.70 A420/g); CH group: 0.85 U mL-1, 0.35 A420/g; CHBE group: 0.57 U mL-1, 0.27 A420/g. CHBE showed a titratable acidity of 1.33% and pH 3.73 post-storage, impeding microbial proliferation with the lowest counts (2.30-3.24 log CFU g-1). The microbial suitability of the NC group diminished after day 6, with an overall preference score of 1.00. Conversely, the CH and CHBE groups scored 3.15 and 4.56, highlighting the coatings' effectiveness. Bergamot juice powder extract further enhanced this, mitigating browning and enhancing quality. Results reveal tailored coatings' potential to extend shelf life, improve quality, and enhance fruit salads' acceptability. This study underscores the importance of edible coatings in addressing preservation challenges, emphasizing their role in enhancing food quality and consumer acceptability. Incorporating edible coatings is pivotal in mitigating deterioration issues and ensuring the overall success of fresh-cut fruit products in the market.
Collapse
Affiliation(s)
| | - Yakup Sedat Velioglu
- Department of Food Engineering, Ankara University, 06850 Golbasi, Ankara, Turkey;
| |
Collapse
|
15
|
Zhao WB, Wang Y, Li FK, Guo R, Jiao FH, Song SY, Chang SL, Dong L, Liu KK, Shan CX. Highly Antibacterial and Antioxidative Carbon Nanodots/Silk Fibroin Films for Fruit Preservation. NANO LETTERS 2023; 23:11755-11762. [PMID: 38091579 DOI: 10.1021/acs.nanolett.3c03621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability. The films effectively integrate key functionalities (atmosphere control, resistance to food-borne pathogens, and antioxidation properties) and can be manufactured in large sizes (about 20 × 30 cm), boasting a transmission rate of 13 183 cm3/m2·day for oxygen and 2860 g/m2·day for water vapor, favoring the preservation of fresh fruits. A convenient dip-coating method enables in situ fabrication of films with a thickness of approximately 14 μm directly on the fruits' surface providing comprehensive protection. Importantly, the films are washable and biodegradable. This work presents a promising technology to produce multifunctional and eco-friendly antibacterial packaging systems.
Collapse
Affiliation(s)
- Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Hang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shu-Long Chang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Habibi F, García-Pastor ME, Puente-Moreno J, Garrido-Auñón F, Serrano M, Valero D. Anthocyanin in blood oranges: a review on postharvest approaches for its enhancement and preservation. Crit Rev Food Sci Nutr 2023; 63:12089-12101. [PMID: 35822279 DOI: 10.1080/10408398.2022.2098250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanin concentration is considered an important fruit quality index of blood oranges and has gained popularity among consumers due to its antioxidant capacity, therapeutic properties, and prevention of some human diseases. Anthocyanin biosynthesis occurs in the cytoplasmic face of the endoplasmic reticulum by multi-enzymes complexes through the flavonoid pathway. Polyphenoloxidase (PPO) and β-glucosidase (anthocyanase) are the enzymes responsible for anthocyanin degradation. Blood oranges are cold-dependent for anthocyanin biosynthesis and accumulation, and thus, the low temperature of storage can enhance anthocyanin concentration and improve internal fruit quality. In addition, anthocyanin accumulation can be accelerated by postharvest technologies, either physical treatments or chemical elicitors. However, low temperatures can induce chilling injury (CI) incidence in blood oranges. Postharvest chemical elicitors treatments can enhance anthocyanin accumulation and prevent CI. This review provides the most updated information about postharvest tools modulating the anthocyanin content, and the role of enhancing and preserving pigmentation to produce blood orange with the highest quality standards.
Collapse
Affiliation(s)
- Fariborz Habibi
- Department of Food Technology, University Miguel Hernández. Ctra, Orihuela, Alicante, Spain
| | | | - Jenifer Puente-Moreno
- Department of Food Technology, University Miguel Hernández. Ctra, Orihuela, Alicante, Spain
| | - Fernando Garrido-Auñón
- Department of Food Technology, University Miguel Hernández. Ctra, Orihuela, Alicante, Spain
| | - María Serrano
- Department of Applied Biology, University Miguel Hernández. Ctra, Orihuela, Alicante, Spain
| | - Daniel Valero
- Department of Food Technology, University Miguel Hernández. Ctra, Orihuela, Alicante, Spain
| |
Collapse
|
17
|
Solution roadmap to reduce food loss along your postharvest supply chain from farm to retail. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
18
|
Wang M, Chen T, Wang Q, Shi Y. Antioxidant, Bacteriostatic and Preservative Effects of Extractable Condensed Tannins Isolated from Longan Pericarps and Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:512. [PMID: 36771597 PMCID: PMC9921410 DOI: 10.3390/plants12030512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
In the process of longan production and processing, a large amount of remnants is produced, such as dried longan pericarps and seeds, which have been reported to be rich in polyphenols but not effectively utilized. In this paper, the total phenolic contents in the remnants of longan pericarps and seeds were found to be 39.58 ± 3.54 and 69.53 ± 1.99 mg/g (DW), respectively, accounting for 60-80% of those in fresh samples. The contents of extractable condensed tannins (ECTs) in the remnants of longan pericarps and seeds were 19.25 ± 6.71 mg/g (DW) and 44.59 ± 2.05 mg/g (DW), respectively, accounting for 60-70% of the fresh samples. These data indicate that the polyphenols in the remnants of the sampled longan pericarps and seeds were effectively retained. The antioxidant capacity of ECTs from the longan pericarps and seeds was more than 60% of the fresh samples measured with the 1, 1-diphenyl-2-trinitrophenylhydrazine and ferric reducing ability of plasma methods. Further exploration showed that ECTs from the longan pericarps and seeds had significant inhibitory effects on Pseudomonas aeruginosa, Escherichia coli, Salmonella and Staphylococcus aureus. The minimum inhibitory concentration (MIC) of the longan pericarp ECTs on all four studied bacteria was 3 mg/mL. The MIC of longan seed ECTs on Salmonella was 3 mg/mL, and that of the other three bacteria was 1.5 mg/mL. In view of the good antioxidant and antibacterial activities of longan pericarps and seeds, we applied them to the preservation of fresh-cut lotus roots. When the concentration of ECTs in the longan pericarps and seeds was 2 mg/mL and 1 mg/mL, respectively, the two kinds of ECTs showed an obvious preservative effect. After the ECT treatment of the lotus roots, their browning degree was reduced, their color was better maintained, their respiration was inhibited and their nutrient loss was reduced. Bacterial reproduction was inhibited, and cell senescence was slowed. Accordingly, the shelf life of ECT-treated fruits and vegetables can be effectively extended. Overall, we can suggest that ECTs from the remnants of dried longan pericarps and seeds could be used as natural preservatives for fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Mengli Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ting Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, China
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, F-75006 Paris, France
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Demonstration Center for Experimental Life Sciences Education, Xiamen University, Xiamen 361102, China
| |
Collapse
|
19
|
Zambon A, González-Alonso V, Lomolino G, Zulli R, Rajkovic A, Spilimbergo S. Increasing the Safety and Storage of Pre-Packed Fresh-Cut Fruits and Vegetables by Supercritical CO 2 Process. Foods 2022; 12:foods12010021. [PMID: 36613236 PMCID: PMC9818350 DOI: 10.3390/foods12010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This work presents a feasibility lab-scale study for a new preservation method to inactivate microorganisms and increase the shelf life of pre-packed fresh-cut products. Experiments were conducted on coriander leaves and fresh-cut carrots and coconut. The technology used the combination of hydrostatic pressure (<15 MPa), low temperature (≤45 °C), and CO2 modified atmosphere packaging (MAP). The inactivation was achieved for the naturally present microorganisms (total mesophilic bacteria, yeasts and molds, total coliforms) and inoculated E. coli. Yeasts and molds and coliform were under the detection limit in all the treated samples, while mesophiles were strongly reduced, but below the detection limit only in carrots. Inoculated E. coli strains were completely inactivated (>6.0 log CFU/g) on coconut, while a reduction >4.0 log CFU/g was achieved for carrots and coriander. For all the treated products, the texture was similar to the fresh ones, while a small alteration of color was detected. Microbiological stability was achieved for up to 14 days for both fresh-cut carrots and coconut. Overall, the results are promising for the development of a new mild and innovative food preservation technique for fresh food.
Collapse
Affiliation(s)
- Alessandro Zambon
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
- Correspondence:
| | | | - Giovanna Lomolino
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy
| | - Riccardo Zulli
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andreja Rajkovic
- Department of Food Safety and Quality Management, University of Belgrade—Faculty of Agriculture, 11080 Belgrade, Serbia
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Sara Spilimbergo
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| |
Collapse
|
20
|
Wu J, Zhang L, Fan K. Recent advances in polysaccharide-based edible coatings for preservation of fruits and vegetables: A review. Crit Rev Food Sci Nutr 2022; 64:3823-3838. [PMID: 36263979 DOI: 10.1080/10408398.2022.2136136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Harvested fruits and vegetables are prone to decay and quality deterioration during storage. Although traditional packaging and chemical treatments are effective, they are harmful to the environment and human health. Hence, higher requirements for food preservation technology are increasingly proposed. Nontoxic, renewable, degradable, and edible packaging for fruits and vegetables has become a research hotspot in recent years. Chitosan, alginate, cellulose, pectin, starch, and other polysaccharides as coating materials have been widely used. Compared with traditional plastic packaging and chemical treatment, these coatings exhibited a better preservation effect and higher safety. In this paper, the preservation mechanism of fruits and vegetables by edible coatings treatment was described, and the research on edible coatings used in fruits and vegetables was summarized. The effects polysaccharide-based edible coatings on physicochemical quality and antimicrobial effect of fruits and vegetables were reviewed.
Collapse
Affiliation(s)
- Jiaxin Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Liang Zhang
- Yichang Anji Agriculture Co., Ltd, Zhijiang, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
21
|
Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: Sources, Processing and Modification Techniques. Gels 2022; 8:gels8070393. [PMID: 35877478 PMCID: PMC9322947 DOI: 10.3390/gels8070393] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid-base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy;
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
| | - Gibson Stephen Nyanhongo
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
- Correspondence:
| |
Collapse
|
22
|
Boukoufi C, Boudier A, Maincent P, Vigneron J, Clarot I. Food-inspired innovations to improve the stability of active pharmaceutical ingredients. Int J Pharm 2022; 623:121881. [PMID: 35680111 DOI: 10.1016/j.ijpharm.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
Food-processing and pharmaceutical industries share a lot of stability issues against the same physical, chemical, and microbiological phenomena. They also share some solutions to improve the stability as the use of preservatives and packaging. Ecological concerns lead to the development of tremendous innovations in food. Some of these innovations could also be beneficial in the pharmaceutical domain. The objective of this review is to evaluate the potential application of these findings in the pharmaceutical field and the main limits in terms of toxicity, environmental, economic and regulatory issues. The principal factors influencing the shelf-life were highlighted through the description of the stability studies usually performed in the pharmaceutical industry (according to European guidelines). To counter those factors, different solutions are currently available as preservatives and specific packaging. They were described and debated with an overview of recent food innovations in each field. The limits of the current solutions in the pharmaceutical field and the innovation in the food field have inspired a critical pharmaceutical outlook. The active and intelligent packaging for active pharmaceutical ingredients of the future is imagined.
Collapse
Affiliation(s)
- Célia Boukoufi
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | | | | | - Jean Vigneron
- Pharmacy Department, University Hospital, 54511 Vandoeuvre-lès-Nancy, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| |
Collapse
|
23
|
Tajeddin B, Shakerardekani A. The effect of packaging and storage time on quality of clustered fresh pistachio. J Food Sci 2022; 87:2943-2952. [PMID: 35655360 DOI: 10.1111/1750-3841.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Pistachio is one of the valuable, very nutritious, and high-energy fruits that is mainly dried and used as a snack due to problems with storage. Therefore, to investigate on how to extend clustered fresh pistachios' shelf-life, the effects of various packaging and storage conditions on the pistachios are presented in this study. Thus, clustered in-hull fresh pistachios were packaged in: (a) Polyethylene film, 45 µm in thickness; (b) polypropylene/polyethylene/polyamide/polyethylene/aluminum foil multilayer film, 90 µm in thickness; (c) both films with alcoholic paper; in air, and under two gas mixtures of 88%N2 + 10%CO2 + 2%O2 and 83%N2 + 15%CO2 + 2%O2 . Samples were refrigerated at 5 ± 1°C for 3 months. Quality factors such as moisture content, weight loss, respiration rate, pH, texture, and appearance of the samples were monitored for fresh pistachio kernels and clustered pistachios. Data were analyzed in a completely randomized design using one-way analysis of variance. The results showed that the shelf-life of MAP samples drastically increased compared to the control (packages without gaseous and alcoholic paper). A comparison of means among the groups suggests that the multilayer bags of fresh clustered pistachios with a mixture of 83%N2 + 15%CO2 + 2%O2 for a 3-month storage period is a particularly effective treatment. PRACTICAL APPLICATION: It is the first time that fresh pistachio is packaged in clusters (bundle). It seems that the packaging of fresh pistachio clusters, in addition to the benefits mentioned in this paper has a psychological effect on the consumer in terms of the naturalness of this product and has added value due to being considered an organic, luxurious, and delicacy food product. Therefore, in this study, the active MAP method that includes the technique of injecting carbon dioxide, nitrogen, and oxygen into the packaging was used to investigate its effects on the properties and shelf-life of raw clustered pistachios for fresh consumption.
Collapse
Affiliation(s)
- Behjat Tajeddin
- Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ahmad Shakerardekani
- Pistachio Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| |
Collapse
|
24
|
Pectin-Based Edible Coating Combined with Chemical Dips Containing Antimicrobials and Antibrowning Agents to Maintain Quality of Fresh-Cut Pears. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to assess the effects of pectin coating alone (PE) or combined with chemical dips containing potassium sorbate (PS) or sodium benzoate (SB) as antimicrobials, and N-acetyl cysteine (N-AC) or ascorbic acid (AA) + citric acid (CA) as antibrowning agents, on weight loss, color values, browning index, firmness, titratable acidity, soluble solids content, total phenolic content, antioxidant activity and sensory attributes of fresh-cut pears during 15-day storage at 8 °C. Pectin coating delayed weight loss and improved firmness of fresh-cut pears as compared to control samples. Addition of either 1% N-AC or 1% CA + 1% AA in the formulation of the chemical dip protected the phenolic compounds and enhanced the antioxidant activity of fresh-cut pears during storage. PE + 0.2% SB + 1% N-AC and PE + 0.2% PS + 1% N-AC were the most efficient treatments in preserving color and reducing the browning index of fresh-cut pears during 15-day storage at 8 °C and received the highest scores for all sensory attributes throughout 12 days of storage. The results demonstrate the feasibility of PE + 0.2% SB + 1% N-AC and PE + 0.2% PS + 1% N-AC for extending the shelf life of fresh-cut pears.
Collapse
|
25
|
Mubarok S, Maulida Rahman I, Nuraniya Kamaluddin N, Solihin E. Impact of 1-Methylcyclopropene combined with chitosan on postharvest quality of tropical banana ‘Lady Finger’. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ikrima Maulida Rahman
- Undergraduate Program of Agrotechnology, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Eso Solihin
- Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
26
|
Sharma S, Shree B, Sharma D, Kumar S, Kumar V, Sharma R, Saini R. Vegetable microgreens: The gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Res Int 2022; 155:111038. [DOI: 10.1016/j.foodres.2022.111038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/22/2023]
|
27
|
Fernandes BCN, Paulo BB, Guimarães MC, Sarantopoulos CIGDL, Melo NR, Prata AS. Prospection of the use of encapsulation in food packaging. Compr Rev Food Sci Food Saf 2022; 21:2309-2334. [DOI: 10.1111/1541-4337.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Bruna Barbon Paulo
- Department of Food Engineering, School of Food Engineering State University of Campinas Campinas Brazil
| | - Maria Clara Guimarães
- Department of Food Technology, Institute of Technology Federal Rural University of Rio de Janeiro Seropédica Brazil
| | | | - Nathália Ramos Melo
- Department of Food Technology, Institute of Technology Federal Rural University of Rio de Janeiro Seropédica Brazil
- Department of Agribusiness Engineering Federal Fluminense University Volta Redonda Brazil
| | - Ana Silvia Prata
- Department of Food Engineering, School of Food Engineering State University of Campinas Campinas Brazil
| |
Collapse
|
28
|
Aquaphotomic, E-Nose and Electrolyte Leakage to Monitor Quality Changes during the Storage of Ready-to-Eat Rocket. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072252. [PMID: 35408652 PMCID: PMC9000777 DOI: 10.3390/molecules27072252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
The consumption of ready-to-eat (RTE) leafy vegetables has increased rapidly due to changes in consumer diet. RTE products are perceived as fresh, high-quality, and health-promoting. The monitoring of the RTE quality is crucial in relation to safety issues. This study aimed to evaluate the maintenance of RTE rocket salad freshness packed under modified atmospheres. A portable E-nose, the electrolyte leakage test (which measures the index of leaf damage-ILD), and NIR spectroscopy and Aquaphotomics were employed. Two trials were carried out, using the following gas mixtures: (A) atmospheric air (21% O2, 78% N2); (B) 30% O2, 70% N2; (C) 10% CO2, 5% O2, 85% N2. Samples were stored at 4 °C and analyzed at 0, 1, 4, 7, 11, and 13 days. ANOVA, PCA, PLS were applied for data processing. E-nose and ILD results identified the B atmosphere as the best for maintaining product freshness. NIR spectroscopy was able to group the samples according to the storage time. Aquaphotomics proved to be able to detect changes in the water structure during storage. These preliminary data showed a good agreement NIR/ILD suggesting the use of NIR for non-destructive monitoring of the damage to the plant membranes of RTE rocket salad.
Collapse
|
29
|
Yüksel Ç, Atalay D, Erge HS. The effects of chitosan coating and vacuum packaging on quality of fresh‐cut pumpkin slices during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Çiğdem Yüksel
- Department of Biology, Faculty of Science and Letters Manisa Celal Bayar University Manisa Turkey
| | - Derya Atalay
- Department of Food Engineering, Faculty of Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| | - Hande Selen Erge
- Department of Food Engineering, Faculty of Engineering Bolu Abant Izzet Baysal University Bolu Turkey
| |
Collapse
|
30
|
Momanyi MR, Nduko JM, Omwamba M. Effect of hermetic Purdue Improved Crop Storage (PICS) bag on chemical and anti-nutritional properties of common Bean ( Phaseolus vulgaris L.) varieties during storage. Curr Res Food Sci 2022; 5:107-116. [PMID: 35028594 PMCID: PMC8739459 DOI: 10.1016/j.crfs.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 10/25/2022] Open
Abstract
Storage conditions influence the nutritive value and quality of many legumes. The aim of this study was to evaluate the quality of beans stored under hermetic conditions as a strategy for preserving the quality of beans post-harvest. Three bean varieties [Rosecoco, small red (Wairimu)], and red mottled (Nyayo)] were adjusted to three moisture levels (12%, 15% and 18%) and stored in hermetic bags and ordinary polypropylene bags and sampled after 0, 45, 90, 135,180, 225 and 270 days for chemical and anti-nutritional analysis. Total soluble sugars, in-vitro starch and protein digestibility, free amino nitrogen, tannin content and phytic acid content of the beans were determined using standard methods. Results showed that the beans in hermetic bags had 22%, 23% and 18% higher total soluble sugars, in-vitro starch and protein digestibility, respectively, than those in polypropylene bag during storage. On day 225 of storage, beans in hermetic bags had the optimal in-vitro starch and protein digestibility, and tannin content. Principal component analysis indicated that nutrient and anti-nutrient retention of the beans was achieved with lower storage moisture and duration in hermetic bags. The results of this study can be used to explain the superiority of the hermetic storage technology over ordinary methods of beans storage, and by extension other legumes, in nutrient retention during storage.
Collapse
Affiliation(s)
- Micah Rambeka Momanyi
- Department of Food Science and Technology, Egerton University, P.O Box 536-20115, Egerton, Kenya
| | - John Masani Nduko
- Department of Food Science and Technology, Egerton University, P.O Box 536-20115, Egerton, Kenya
| | - Mary Omwamba
- Department of Food Science and Technology, Egerton University, P.O Box 536-20115, Egerton, Kenya
| |
Collapse
|
31
|
PLESOIANU AM, NOUR V, TUTULESCU F, IONICA ME. Quality of fresh-cut apples as affected by dip wash treatments with organic acids and acidic electrolyzed water. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.62620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Violeta NOUR
- “Dunarea de Jos” University of Galati, Romania; University of Craiova, Romania
| | | | | |
Collapse
|
32
|
A review on source-specific chemistry, functionality, and applications of chitin and chitosan. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100036] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Khan MR, Di Giuseppe FA, Torrieri E, Sadiq MB. Recent advances in biopolymeric antioxidant films and coatings for preservation of nutritional quality of minimally processed fruits and vegetables. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Muñoz-Almagro N, Herrero-Herranz M, Guri S, Corzo N, Montilla A, Villamiel M. Application of sunflower pectin gels with low glycemic index in the coating of fresh strawberries stored in modified atmospheres. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5775-5783. [PMID: 33788966 DOI: 10.1002/jsfa.11226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND This study reports the use of low glycemic sunflower pectin gel, elaborated with calcium and without or with sweeteners (sucrose, stevia and saccharin) as an edible coating and its possible combination with two modified atmosphere packaging (MAP), in order to extend shelf life, maintaining the quality, of strawberries during the storage at 4 °C. RESULTS This pectin coating, formed with only calcium and/or stevia or saccharin, extended the shelf life of strawberries with respect to uncoating fruits, up to 12 days, keeping the microbial load constant, the firmness and less weight loss. With the same edible coatings, the shelf life of strawberries was extended up to 23 days when they were combined with MAP [10% carbon dioxide (CO2 ), 85% nitrogen (N2 ) and 5% oxygen (O2 )], maintaining the quality of strawberries, while the other MAP, with a higher CO2 concentration (20% CO2 , 75% N2 and 5% O2 ), had no effect. CONCLUSIONS These results highlight the suitability of the combination of edible pectin coating combined with MAP to obtain an important shelf life extension, maintaining the good quality of the fruit. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nerea Muñoz-Almagro
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - María Herrero-Herranz
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - Sonia Guri
- MATGAS Research Center, Barcelona, Spain
| | - Nieves Corzo
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - Antonia Montilla
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | - Mar Villamiel
- Group of Chemistry and Functionality of Carbohydrates and Derivates, Institute of Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| |
Collapse
|
35
|
de Oliveira Filho JG, Miranda M, Ferreira MD, Plotto A. Nanoemulsions as Edible Coatings: A Potential Strategy for Fresh Fruits and Vegetables Preservation. Foods 2021; 10:foods10102438. [PMID: 34681488 PMCID: PMC8535803 DOI: 10.3390/foods10102438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Fresh fruits and vegetables are perishable commodities requiring technologies to extend their postharvest shelf life. Edible coatings have been used as a strategy to preserve fresh fruits and vegetables in addition to cold storage and/or controlled atmosphere. In recent years, nanotechnology has emerged as a new strategy for improving coating properties. Coatings based on plant-source nanoemulsions in general have a better water barrier, and better mechanical, optical, and microstructural properties in comparison with coatings based on conventional emulsions. When antimicrobial and antioxidant compounds are incorporated into the coatings, nanocoatings enable the gradual and controlled release of those compounds over the food storage period better than conventional emulsions, hence increasing their bioactivity, extending shelf life, and improving nutritional produce quality. The main goal of this review is to update the available information on the use of nanoemulsions as coatings for preserving fresh fruits and vegetables, pointing to a prospective view and future applications.
Collapse
Affiliation(s)
- Josemar Gonçalves de Oliveira Filho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara—Jaú Km 1, Araraquara 14800-903, SP, Brazil; (J.G.d.O.F.); (M.M.)
| | - Marcela Miranda
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara—Jaú Km 1, Araraquara 14800-903, SP, Brazil; (J.G.d.O.F.); (M.M.)
| | - Marcos David Ferreira
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos 13560-970, SP, Brazil
- Correspondence: (M.D.F.); (A.P.)
| | - Anne Plotto
- ARS Horticultural Research Laboratory, United States Department of Agriculture, 2001 South Rock Road, Fort Pierce, FL 34945, USA
- Correspondence: (M.D.F.); (A.P.)
| |
Collapse
|
36
|
Leila A, Nafiseh Z, Samira N, Saeed P, Mohammad G, Hajar A. Evaluation of the shelf life of minimally processed lettuce packed in modified atmosphere packaging treated with calcium lactate and heat shock, cysteine and ascorbic acid and sodium hypochlorite. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00991-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Bizymis AP, Tzia C. Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 2021; 62:8777-8792. [PMID: 34098828 DOI: 10.1080/10408398.2021.1934652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Edible films and coatings, despite their practical applications, have only entered the food industry in the last decade. Their main functions are to protect the food products from mechanical damage and from physical, chemical and microbiological deteriorative changes. The ingredients used for their formation are polysaccharides, proteins and lipids, in individual or combined formulations. The edible films and coatings have already been applied on various food products, such as fruits, vegetables, meat products, seafood products, cheese, baked products and deep fat fried products. The techniques for their application on foods are of particular interest. Nowadays, composite edible films and coatings are also being studied, based on combinations of the properties of individual components. In addition to conventional materials, new ones, such as nanomaterials, are being investigated, aiming to enhance the resulting properties. However, before the incorporation of new materials to films and coatings, they must be thoroughly checked according to the legislation, to assure their lawful use. This review covers the recent developments on the edible films and coatings area in terms of the contribution of novel constituting materials to the improvement of their properties.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
38
|
Panahirad S, Dadpour M, Peighambardoust SH, Soltanzadeh M, Gullón B, Alirezalu K, Lorenzo JM. Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Hu Y, Zhou Y, Liu J, Wang Q, Lin J, Shi Y. Effect of 4‐methoxycinnamic acid on the postharvest browning of mushrooms (
Agaricus bisporus
). J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong‐Hua Hu
- School of Biological Science and Biotechnology Minnan Normal University Zhangzhou China
- Key Laboratory of Loquat Germplasm Innovation and Utilization (Putian University) Fujian Province University Putian China
| | - Yuan Zhou
- School of Life Sciences Xiamen University Xiamen China
| | - Jia‐Ai Liu
- School of Life Sciences Xiamen University Xiamen China
| | - Qin Wang
- School of Life Sciences Xiamen University Xiamen China
| | - Jian‐Cheng Lin
- Key Laboratory of Loquat Germplasm Innovation and Utilization (Putian University) Fujian Province University Putian China
| | - Yan Shi
- School of Life Sciences Xiamen University Xiamen China
| |
Collapse
|
40
|
|
41
|
Hoppu U, Puputti S, Sandell M. Factors related to sensory properties and consumer acceptance of vegetables. Crit Rev Food Sci Nutr 2020; 61:1751-1761. [PMID: 32441536 DOI: 10.1080/10408398.2020.1767034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many consumers perceive the bitter taste or other sensory characteristic of vegetables as unpleasant, posing a challenge to dietary recommendations aiming to increase vegetable consumption. Food experience is multisensory, with complex interactions between the senses and individual differences in sensory perception. This review focuses on the factors affecting sensory properties of vegetables and sensory perception of vegetables among adults. Topical examples of sensory quality and evaluation of vegetable samples are presented. Cultivar and growing conditions are related to the internal sensory quality of vegetables. The effects of different processing methods, such as freezing and cooking, on the sensory properties of vegetables are also reviewed. Flavor modification of vegetables with seasonings may be used to improve palatability and incorporating vegetables to meals may increase the intake of vegetables. Recently, external factors (e.g. visual and odor stimuli) have been tested in multisensory research in the context of vegetable perception and choice. These options to achieve better sensory quality, more palatable meals and pleasant eating context may be used to promote vegetable intake among adults.
Collapse
Affiliation(s)
- Ulla Hoppu
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Sari Puputti
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Mari Sandell
- Functional Foods Forum, University of Turku, Turku, Finland.,Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Classic and Reaction-Diffusion Models Used in Modified Atmosphere Packaging (MAP) of Fruit and Vegetables. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09214-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Effect of Nanostructured Chitosan/Propolis Coatings on the Quality and Antioxidant Capacity of Strawberries During Storage. COATINGS 2020. [DOI: 10.3390/coatings10020090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Strawberries have a thin epidermis and a high respiration rate. The use of edible coatings containing chitosan nanoparticles (CSNPs) and propolis (P) has been effective in preserving the shelf life and antioxidant capacity of various fruit and vegetable products. The present research evaluated the effect of coatings with CSNPs and P on the quality, antioxidant compounds, and antioxidant capacity of strawberries. The specific coatings that were evaluated were chitosan (CS), CS+CSNPs33%, CS + CSNPs + P10%, CS + CSNPs + P20%, CS + CSNPs + P30%, and a control with no coating. The variables were weight loss, firmness, total soluble solids (TSS), color, phenols, total flavonoids, antioxidant capacity, and sensory characteristics. An ANOVA and a Tukey test (p ≤ 0.05) were used to analyze the data. Strawberries covered with CS + CSNPs + P10% showed the lowest weight loss (9.77%), while those covered with CS + CSNPs + P20% had the greatest firmness (4.96 N). CS + CSNPs + P coatings at 10%, 20%, and 30% concentrations maintained the antioxidant compounds and antioxidant capacity in the evaluated fruit (28.49 mg GAE g−1, 554.61 μg quercetin g−1, and 92.48% DPPH, respectively). The application of nanostructured coatings did not modify the sensory characteristics of the fruit. Coatings with CSNPs and/or P could therefore be a viable alternative for preserving the quality and antioxidant capacity of strawberries.
Collapse
|
44
|
Zhu Y, Li D, Belwal T, Li L, Chen H, Xu T, Luo Z. Effect of Nano-SiOx/Chitosan Complex Coating on the Physicochemical Characteristics and Preservation Performance of Green Tomato. Molecules 2019; 24:molecules24244552. [PMID: 31842429 PMCID: PMC6943560 DOI: 10.3390/molecules24244552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
A novel nano-silicon oxides (SiOx)/chitosan complex film was prepared using ultrasonic assistant in the process of dissolving chitosan and silicon oxides (SiOx), and characterized by transmission electron microscopy. Its effect on quality preservation of tomatoes (Solanum lycopersicum L. cv. Zheza 205) was investigated under ambient temperature. The results revealed that the nano-SiOx/chitosan complex (NSCC) film retarded weight loss and softness, delayed the titratable acids and total soluble solids loss, and thus markedly extended shelf life of green tomatoes. The antimicrobial activity of tomatoes coated with NSCC film was also recorded higher compared to chitosan (Ch) films and control. In addition, the NSCC film-coated tomatoes prevent the increase of malondialdehyde content and total polyphenol content. Moreover, the peroxidase activity, phenylalanine ammonia-lyase activity, and polyphenoloxidase activity of tomatoes coated with NSCC film were found lower than that in other treatments. These data indicated that the beneficial effects of nano-SiOx/chitosan complex coating on postharvest quality were possibly associated with the lower rate of O2/CO2 transmission coefficient, limiting food-borne pathogenic bacterial growth, higher antioxidant activities, and also higher reactive oxygen species (ROS) scavenging and anti-browning activities of related enzymes in the tomatoes. Further, the results of the study could be used to successfully develop a novel nano-SiOx/chitosan complex film for improving the postharvested quality of tomatoes and thus effectively utilized by the food packaging industry.
Collapse
Affiliation(s)
- Yingjie Zhu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Hangjun Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310058, China;
| | - Tingqiao Xu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
- Correspondence: ; Tel.: +86-135-1581-3691
| |
Collapse
|
45
|
Fonseca KS, Melo AAM, da Rosa Ferraz Jardim AM, de Sousa AED, Pereira-Flores ME, Ventrella MC, do Nascimento Simões A, Puschmann R. Physicochemical, physiological and anatomical properties of three segments of peach palm for industrial use and minimal processing. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00208-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Sheikhi A, Mirdehghan SH, Karimi HR, Ferguson L. Effects of Passive- and Active-Modified Atmosphere Packaging on Physio-Chemical and Quality Attributes of Fresh In-Hull Pistachios ( Pistacia vera L. cv. Badami). Foods 2019; 8:E564. [PMID: 31717485 PMCID: PMC6915612 DOI: 10.3390/foods8110564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of passive- and active-modified atmosphere packaging (passive- and active-MAP) were investigated on the physio-chemical and quality attributes of fresh in-hull pistachios stored at 4 ± 1 °C and 90 ± 5% R.H. Fresh pistachios were packaged under each of the following gas combinations: active-MAP1 (AMA1) (5% O2 + 5% CO2), AMA2 (5% O2 + 25% CO2), AMA3 (5% O2 + 45% CO2), AMA4 (2.5% O2 + 5% CO2), AMA5 (2.5% O2 + 25% CO2), and AMA6 (2.5% O2 + 45% CO2), all balanced with N2, as well as passive-MAP (PMA) with ambient air (21% O2 + 0.03% CO2 + 78% N2). Changes in quality parameters were evaluated after 0, 15, 30 and 45 days of storage. Results demonstrated that AMA6 and PMA had significantly lower (7.96 Log CFU g-1) and higher (9.81 Log CFU g-1) aerobic mesophilic bacteria counts than the other treatments. However, the AMA6 treatment decreased, kernel chlorophyll and carotenoid content, hull antioxidant capacity, and anthocyanin content. The PMA treatment produced a significant weight loss, 0.18%, relative to the other treatments. The active-MAP treatments were more effective than the passive-MAP in decreasing weight loss, microbial counts, kernel total chlorophyll (Kernel TCL), and kernel carotenoid content (Kernel CAC). The postharvest quality of fresh in-hull pistachios was maintained best by the AMA3 (5% O2 + 45% CO2 + 50% N2) treatment.
Collapse
Affiliation(s)
- Abdollatif Sheikhi
- Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Kerman, Iran; (A.S.); (H.R.K.)
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Seyed Hossein Mirdehghan
- Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Kerman, Iran; (A.S.); (H.R.K.)
| | - Hamid Reza Karimi
- Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Kerman, Iran; (A.S.); (H.R.K.)
| | - Louise Ferguson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
47
|
Fan K, Zhang M, Fan D, Jiang F. Effect of carbon dots with chitosan coating on microorganisms and storage quality of modified-atmosphere-packaged fresh-cut cucumber. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6032-6041. [PMID: 31226218 DOI: 10.1002/jsfa.9879] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In order to inhibit microorganisms and improve storage quality of fresh-cut cucumber, fresh-cut cucumber was treated by carbon dots (CDs) from kelp/chitosan (CH) coating solution with CD concentrations of 0%, 1.5%, 3% and 4.5% and then packaged as well as stored at 4 °C for 15 days. The effect of CDs/CH coating on microorganisms and the quality of modified-atmosphere-packaged fresh-cut cucumber during storage were investigated. RESULTS The CDs was monodispersed spherical morphology with size distribution of 0.54-0.83 nm. Interaction of CDs and CH had the generation of strong hydrogen bond. Inhibition zone diameters of CDs/CH coating against Staphylococcus aureus and Escherichia coli were enhanced with the increase of CD concentrations. Moreover, CDs/CH coating inhibited the growth of total number of colonies, mold, and yeast in modified-atmosphere-packaged fresh-cut cucumber during storage. A coating of 4.5% CDs/CH effectively reduced the losses of weight, firmness, and total soluble solids, the degradation of ascorbic acid content and flavor, and inhibited peroxidases activity, as well as decreased water mobility in fresh-cut cucumber during storage. CONCLUSION The results indicated that a CDs/CH coating was helpful for inhibiting microorganisms and improving storage quality, and could be an effective method to prolong shelf life of fresh-cut cucumber. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Dongcui Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | | |
Collapse
|
48
|
Leneveu-Jenvrin C, Charles F, Barba FJ, Remize F. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit Rev Food Sci Nutr 2019; 60:2837-2855. [PMID: 31547681 DOI: 10.1080/10408398.2019.1664979] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fruit and vegetables are an important part of human diets and provide multiple health benefits. However, due to the short shelf-life of fresh and minimally-processed fruit and vegetables, significant losses occur throughout the food distribution chain. Shelf-life extension requires preserving both the quality and safety of food products. The quality of fruit and vegetables, either fresh or fresh-cut, depends on many factors and can be determined by analytical or sensory evaluation methods. Among the various technologies used to maintain the quality and increase shelf-life of fresh and minimally-processed fruit and vegetables, biological control is a promising approach. Biological control refers to postharvest control of pathogens using microbial cultures. With respect to application of biological control for increasing the shelf-life of food, the term biopreservation is favored, although the approach is identical. The methods for screening and development of biocontrol agents differ greatly according to their intended application, but the efficacy of all current approaches following scale-up to commercial conditions is recognized as insufficient. The combination of biological and physical methods to maintain quality has the potential to overcome the limitations of current approaches. This review compares biocontrol and biopreservation approaches, alone and in combination with physical methods. The recent increase in the use of meta-omics approaches and other innovative technologies, has led to the emergence of new strategies to increase the shelf-life of fruit and vegetables, which are also discussed herein.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Florence Charles
- QualiSud, Université d'Avignon, CIRAD, Université Montpellier, Montpellier SupAgro, Université de La Réunion, Avignon, France
| | - Francisco J Barba
- Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Burjassot, València, Spain
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| |
Collapse
|
49
|
Grande Tovar CD, Delgado-Ospina J, Navia Porras DP, Peralta-Ruiz Y, Cordero AP, Castro JI, Chaur Valencia MN, Mina JH, Chaves López C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan- Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava ( Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019; 9:biom9090399. [PMID: 31443462 PMCID: PMC6770565 DOI: 10.3390/biom9090399] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 01/11/2023] Open
Abstract
Guava is a fruit appreciated worldwide for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pathogenic species such as the fungi Colletotrichum gloeosporioides, which causes anthracnosis. To diminish the losses caused by pathogenic fungi, coatings of chitosan (CS) with Ruta graveolens essential oil (RGEO) in different concentrations (0.5, 1.0, 1.5% v/v) were applied in situ and their effects on the physical properties and microbiological quality of the guavas were studied. The CS+RGEO coated fruits exhibited better physicochemical behavior and lower microbiological decay as compared to the uncoated guavas, demonstrating the effectiveness of the coatings, especially those with 1.5% of RGEO content. All the fruits coated had greater acceptance and quality than the controls, being more those with essential oil incorporation. In situ investigation of C. gloesporioides infection of guavas demonstrated that the CS+RGEO coated guavas showed a high percentage of inhibition in the development of anthracnose lesions. In the present investigation, an alternative method has been proposed to extend the stability of the guavas fruit up to 12 days with application in the food industry.
Collapse
Affiliation(s)
- Carlos David Grande Tovar
- Grupo de Investigación de fotoquímica y fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Diana Paola Navia Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
| | - Yeimmy Peralta-Ruiz
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Facultad de Ingeniería, Programa de Ingeniería Agroindustrial, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Alexander Pérez Cordero
- Grupo de Investigación en Bioprospección Agropecuarias, Universidad de Sucre, carrera 28 # 5-267, Puerta Roja - Sincelejo (Sucre) 700008, Colombia
| | - Jorge Iván Castro
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia
| | - Manuel Noé Chaur Valencia
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia.
| | - José Hermínsul Mina
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia.
| | - Clemencia Chaves López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
50
|
Lin X, Sun DW. Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|