1
|
Hu Y, Badar IH, Zhang L, Yang L, Xu B. Odor and taste characteristics, transduction mechanism, and perceptual interaction in fermented foods: a review. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39012297 DOI: 10.1080/10408398.2024.2377292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Fermentation is a critical technological process for flavor development in fermented foods. The combination of odor and taste, known as flavor, is crucial in enhancing people's perception and psychology toward fermented foods, thereby increasing their acceptance among consumers. This review summarized the determination and key flavor compound screening methods in fermented foods and analyzed the flavor perception, perceptual interactions, and evaluation methods. The flavor compounds in fermented foods could be separated, purified, and identified by instrument techniques, and a molecular sensory science approach could identify the key flavor compounds. How flavor compounds bind to their respective receptors determines flavor perception, which is influenced by their perceptual interactions, including odor-odor, taste-taste, and odor-taste. Evaluation methods of flavor perception mainly include human sensory evaluation, electronic sensors and biosensors, and neuroimaging techniques. Among them, the biosensor-based evaluation methods could facilitate the investigation of the flavor transduction mechanism and the neuroimaging technique could explain the brain's signals that relate to the perception of flavor and how they compare to signals from other senses. This review aims to elucidate the flavor profile of fermented foods and highlight the significance of comprehending the interactions between various flavor compounds, thus improving the healthiness and sensory attributes.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, China
| | - Iftikhar Hussain Badar
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Lang Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Linwei Yang
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
2
|
Liu L, Gao Z, Chen G, Yao J, Zhang X, Qiu X, Liu L. A comprehensive review: Impact of oleogel application on food texture and sensory properties. Food Sci Nutr 2024; 12:3849-3862. [PMID: 38873467 PMCID: PMC11167145 DOI: 10.1002/fsn3.4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 06/15/2024] Open
Abstract
Oleogels, characterized by their semisolid matrix formed from liquid oil structured by gelators, are emerging as a pivotal innovation in food formulation, primarily due to their capacity to enhance the nutritional profile of products by incorporating healthier fats. This review explored the integration of oleogels into diverse food matrices, examining their impact on texture, mouthfeel, and overall sensory characteristics. Through an extensive analysis of current research, this paper illustrates the versatility of oleogels created with a variety of structuring agents across different food applications. It also addresses the challenges inherent in the use of oleogels, including the preservation of their stability and consistency through varying storage and processing conditions, navigating the regulatory landscape concerning oleogelator safety and acceptability, and confronting higher production costs. Overall, this comprehensive review highlights the potential of oleogels as a promising tool for achieving desirable textural and sensory attributes in food products while also identifying areas for future research and development.
Collapse
Affiliation(s)
- Lingyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical SciencesNingbo UniversityNingboZhejiangChina
- Department of Food Science and TechnologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Zengli Gao
- Inner Mongolia Enterprise Key Laboratory of Dairy NutritionHealth & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd.HuhhotChina
| | - Gang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical SciencesNingbo UniversityNingboZhejiangChina
| | - Jiaying Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical SciencesNingbo UniversityNingboZhejiangChina
| | - Xinyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical SciencesNingbo UniversityNingboZhejiangChina
| | - Xiaoting Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical SciencesNingbo UniversityNingboZhejiangChina
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical SciencesNingbo UniversityNingboZhejiangChina
| |
Collapse
|
3
|
Salvati D, Paschoalinotto BH, Mandim F, Ferreira ICFR, Steinmacher NC, Pereira C, Dias MI. Exploring the Impacts of Sorghum ( Sorghum bicolor L. Moench) Germination on the Flour's Nutritional, Chemical, Bioactive, and Technological Properties. Foods 2024; 13:491. [PMID: 38338626 PMCID: PMC10855074 DOI: 10.3390/foods13030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Germination is a natural, simple, and economical process used to improve the quality of nutritional and technological grains. In this study, native and sprouted sorghum flours were characterized regarding their technological properties (particle size distribution, water, and oil absorption capacity, swelling power and solubility, microscopy of starch granules, and pasting and thermal properties). Nutritional and phytochemical characterization profiles, including free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds, were explored through chromatographic methods. The antioxidant, anti-inflammatory, and cytotoxic activities of the respective hydroethanolic extracts were also evaluated. The results showed that the germination process caused significant changes in the flour composition and properties, causing reduced gelatinization temperature and retarded starch retrogradation; an increased content of free sugars and total organic acids; and a decreased content of tocopherols and phenolic compounds. In terms of bioactivity, the sprouted sorghum flour extract showed better lipid-peroxidation-inhibition capacity and none of the extracts revealed hepatotoxicity or nephrotoxicity, which are important results for the validation of the use of the flours for food purposes. Germination is an efficient and alternative method for grain modification that gives improved technological properties without chemical modification or genetic engineering.
Collapse
Affiliation(s)
- Diogo Salvati
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento Acadêmico de Alimentos (DAALM), Campus Medianeira, Universidade Tecnológica Federal do Paraná, Medianeira 85884-000, Brazil;
| | - Beatriz Helena Paschoalinotto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nádia Cristiane Steinmacher
- Departamento Acadêmico de Alimentos (DAALM), Campus Medianeira, Universidade Tecnológica Federal do Paraná, Medianeira 85884-000, Brazil;
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Rutkowska J, Baranowski D, Antoniewska-Krzeska A, Kostyra E. Comparison of Storage-Related Volatile Profiles and Sensory Properties of Cookies Containing Xylitol or Sucrose. Foods 2023; 12:4270. [PMID: 38231744 PMCID: PMC10706587 DOI: 10.3390/foods12234270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Excessive consumption of simple sugars is responsible for non-communicable diseases such as obesity, cardiovascular diseases, and diabetes. Xylitol has anticarcinogenic, prebiotic-like characteristics and a lower glycaemic index and caloric value than sugars, which makes it a valuable alternative sweetener. The aim of this study was to examine the effects of storage of volatile compounds and sensory profiles of cookies containing xylitol as a sucrose alternative or sucrose by applying solid-phase microextraction gas chromatography/mass spectrometry and quantitative descriptive analysis. The volatile compound profiles of both kinds of cookies were similar, especially regarding markers of Maillard reactions (Strecker aldehydes, pyrazines) and unfavourable compounds (aldehydes, hydrocarbons, and organic acids). Throughout the period of storage lasting 0-9 months, the total content of hydrocarbons was stable and averaged 10.2% in xylitol cookies and 12.8% in sucrose cookies; their storage for 12 months significantly (p < 0.05) increased the contents to 58.2% and 60.35%, respectively. Unlike sucrose, xylitol improved the stability of the pH and water activity of cookies and sensory attributes such as buttery aroma and texture characteristics during 12 months of storage. The results indicated that 9 months of cookie storage was the maximum recommended period. The inclusion of xylitol in cookies might replace sucrose and high-fructose-corn syrup and synthetic additives commonly used in industrial production.
Collapse
Affiliation(s)
- Jaroslawa Rutkowska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-776 Warsaw, Poland; (D.B.); (A.A.-K.); (E.K.)
| | | | | | | |
Collapse
|
5
|
Zeng S, Zhang L, Li P, Pu D, Fu Y, Zheng R, Xi H, Qiao K, Wang D, Sun B, Sun S, Zhang Y. Molecular mechanisms of caramel-like odorant-olfactory receptor interactions based on a computational chemistry approach. Food Res Int 2023; 171:113063. [PMID: 37330856 DOI: 10.1016/j.foodres.2023.113063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Molecular mechanisms of caramel-like odorant-olfactory receptor interactions were investigated based on molecular docking and molecular dynamics simulations. The transmembrane regions TM-3, TM-5 and TM-6 of receptors were main contributors of amino acid residues in the docking. Molecular docking results showed that hydrogen bonding and pi-pi stacking were the key forces for the stabilization of caramel-like odorants. The binding energies were positively correlated with the molecular weight of caramel-like odorants. Residues Asn155 (84%, OR2W1), Asn206 (86%, OR8D1), Ser155 (77%, OR8D1), Asp179 (87%, OR5M3), Val182 (84%, OR2J2) and Tyr260 (94%, OR2J2) with high frequencies played an important role in the complexes formation. Odorants 4-hydroxy-5-methylfuran-3(2H)-one (16#) and methylglyoxal (128#) were screened by molecular field-based similarity analysis, which tended to bind to the receptors OR1G1 and OR52H1 respectively, resulting a caramel-like aroma perception. The obtained results are useful for better understanding the perception of caramel-like odorants and their high-throughput screening.
Collapse
Affiliation(s)
- Shitong Zeng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Dandan Pu
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yingjie Fu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Ruiyi Zheng
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Xi
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Kaina Qiao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Baoguo Sun
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
6
|
Garvey EC, O'Sullivan MG, Kerry JP, Kilcawley KN. Aroma generation in sponge cakes: The influence of sucrose particle size and sucrose source. Food Chem 2023; 417:135860. [PMID: 36958203 DOI: 10.1016/j.foodchem.2023.135860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The influence of sucrose source and particle size was investigated in relation to the volatile and aromatic properties of sponge cakes. Six sponge cake formulations were studied using two sucrose sources (sugarbeet and sugarcane), at two particle sizes (large and small) with controls. Volatiles profiles and odour active compounds were identified by gas chromatography mass spectrometry and olfactometry. Sixty two volatile compounds were identified, incorporating twenty five odour active compounds/co-eluting compounds, with 5 odours perceived without any corresponding volatile. Particle size had the greatest impact on volatile abundance, with particle size especially influencing pyrazine abundance. Five odour active volatiles (methional, furfural, 2,3-dimethylpyrazine, heptanal and (E)-2-octenal) contributed most to the aroma of these sponge cakes. Small particle size particularly from sugarbeet yielded higher levels of some Maillard and caramelisation reaction compounds, such as furfural (spicy/ bready), where larger particle size supressed volatile abundance in comparison to the control.
Collapse
Affiliation(s)
- E C Garvey
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; Sensory Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - M G O'Sullivan
- Sensory Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - J P Kerry
- Food Packaging Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - K N Kilcawley
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; Sensory Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| |
Collapse
|
7
|
Gutiérrez-Luna K, Astiasarán I, Ansorena D. Fat reduced cookies using an olive oil-alginate gelled emulsion: sensory properties, storage stability and in vitro digestion. Food Res Int 2023; 167:112714. [PMID: 37087273 DOI: 10.1016/j.foodres.2023.112714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Reformulated cookies substituting 100 % butter by an olive oil-alginate gelled emulsion containing 40 % olive oil were elaborated with and without antioxidant, and their nutritional and sensory properties were assessed. Moreover, their performance during in vitro digestion as well as their oxidative stability during storage (21 days) were studied. Reformulated cookies showed a lower fat content (a decrease of 40 %), being this fraction mostly unsaturated (70 % lower saturated fat), in comparison with conventional cookies. Instrumental measures showed higher values for hardness with reformulation, which tends to equalize during storage. Reformulated cookies had good general sensory acceptability, although lower than control ones. Regarding oxidative stability, increases in malondialdehyde were observed in all formulations during storage, but not representing an oxidation problem (<1.5 nmol/g cookies). In vitro digestion assay promoted oxidation, but the use of antioxidants seemed to have a mitigating effect. Also, it seemed that the bioaccessibility of fatty acids after in vitro digestion was higher in the reformulated products (35-40 %) than in the control ones (10-25 %).
Collapse
|
8
|
Timmermans E, Langie I, Bautil A, Brijs K, Buvé C, Van Loey A, Scheirlinck I, Van der Meulen R, Courtin CM. Study of the Fermentation Characteristics of Non-Conventional Yeast Strains in Sweet Dough. Foods 2023; 12:foods12040830. [PMID: 36832904 PMCID: PMC9956332 DOI: 10.3390/foods12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Despite the diverse functions of yeast, only a relatively homogenous group of Saccharomyces cerevisiae yeasts is used in the baking industry. Much of the potential of the natural diversity of yeasts has not been explored, and the sensory complexity of fermented baked foods is limited. While research on non-conventional yeast strains in bread making is increasing, it is minimal for sweet fermented bakery products. In this study, the fermentation characteristics of 23 yeasts from the bakery, beer, wine, and spirits industries were investigated in sweet dough (14% added sucrose w/w dm flour). Significant differences in invertase activity, sugar consumption (0.78-5.25% w/w dm flour), and metabolite (0.33-3.01% CO2; 0.20-1.26% ethanol; 0.17-0.80% glycerol; 0.09-0.29% organic acids) and volatile compound production were observed. A strong positive correlation (R2 = 0.76, p < 0.001) between sugar consumption and metabolite production was measured. Several non-conventional yeast strains produced more positive aroma compounds and fewer off-flavors than the reference baker's yeast. This study shows the potential of non-conventional yeast strains in sweet dough.
Collapse
Affiliation(s)
- Evelyne Timmermans
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Ine Langie
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - An Bautil
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Carolien Buvé
- Laboratory of Food and Microbial Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Ann Van Loey
- Laboratory of Food and Microbial Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Ilse Scheirlinck
- Vandemoortele Izegem NV, Prins Albertlaan 12, 8870 Izegem, Belgium
| | | | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Correspondence: ; Tel.: +32-1632-1917
| |
Collapse
|
9
|
A Cake Made with No Animal Origin Ingredients: Physical Properties and Nutritional and Sensory Quality. Foods 2022; 12:foods12010054. [PMID: 36613270 PMCID: PMC9818566 DOI: 10.3390/foods12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
A gelled emulsion ingredient based on high oleic sunflower oil (20%) and an isolated soy protein suspension were used in the elaboration of a cake to avoid the use of ingredients of animal origin. The control product was elaborated with butter and milk. Sugar was used in both types of formulations, but it was partially replaced by maltitol in the reformulated product. Decreases of 25% in energy and 67% in fat supply were achieved, as well as a 36% reduction in the sugar content. The saturated fatty acid amount was 0.57 g/100 g product, in contrast with the 9.45 g/100 g product found in control products. Differences in color were observed both through instrumental and sensory analysis, especially in the crust, with lower values for the Browning index in the reformulated products. The hedonic test, carried out with 44 untrained panelists, showed a good score for general acceptability (6.1 in contrast to 7.2 for control products), and no significant differences from the control were found for flavor.
Collapse
|
10
|
Giacomozzi AS, Carrín ME, Palla CA. Muffins made with monoglyceride oleogels: Impact of fat replacement on sensory properties and fatty acid profile. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anabella S. Giacomozzi
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Buenos Aires Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Buenos Aires Argentina
| | - María E. Carrín
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Buenos Aires Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Buenos Aires Argentina
| | - Camila A. Palla
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Buenos Aires Argentina
- Planta Piloto de Ingeniería Química ‐ PLAPIQUI (UNS‐CONICET) Buenos Aires Argentina
| |
Collapse
|
11
|
Merlino M, Arena E, Cincotta F, Condurso C, Brighina S, Grasso A, Fallico B, Verzera A. Fat type and baking conditions for cookies recipe: a sensomic approach. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maria Merlino
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Elena Arena
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Fabrizio Cincotta
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Concetta Condurso
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| | - Selina Brighina
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Antonia Grasso
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Biagio Fallico
- Di3A Department University of Catania Via Santa Sofia 98, 95123 Catania Italy
| | - Antonella Verzera
- Department of Veterinary Sciences University of Messina Viale G. Palatucci, 98168 Messina Italy
| |
Collapse
|
12
|
Majzoobi M, Mohammadi M, Farahnaky A. Simultaneous reduction of fat and sugar in cake production; effects of changing sucrose, oil, water, inulin, and Rebaudioside A on cake batter properties. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mahsa Majzoobi
- School of Science, Bioscience and Food Technology RMIT University Melbourne VIC Australia
| | - Mahshid Mohammadi
- Department of Food Science and Technology, School of Agriculture Shiraz University Shiraz Iran
| | - Asgar Farahnaky
- School of Science, Bioscience and Food Technology RMIT University Melbourne VIC Australia
| |
Collapse
|
13
|
Garvey EC, O'Sullivan MG, Kerry JP, Milner L, Gallagher E, Kilcawley KN. Characterising the sensory quality and volatile aroma profile of clean-label sucrose reduced sponge cakes. Food Chem 2020; 342:128124. [PMID: 33127226 DOI: 10.1016/j.foodchem.2020.128124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
The sensory and aroma quality of 30% (w/w) sucrose reduced sponge cakes incorporating clean-label replacers were investigated. The sensory quality of the reformulated sponge cakes varied, with those containing apple pomace powder (APP) showing the greatest difference to the control (SC100). Volatile profiles mainly differed in relation to compounds derived from the Maillard reaction, caramelisation and lipid oxidation. Thrity six aroma active volatile compounds were identified in the SC100, APP and oligofructose (OLIGO) sponge cakes by olfactometry. Furfural 'spicy bready' contributed most to the overall aroma of all samples, with factor dilution values differing the most for heptanal 'fatty cake crust', methional 'potato damp', and 2,5-dimethylpyrazine 'cake crust, nutty'. This study provides an in-depth insight into the impact of sugar reduction reformulation on the sensory perception of sponge cakes and demonstrates how this approach can be used to improve the sensory perception of reduced sucrose sponge cakes.
Collapse
Affiliation(s)
- E C Garvey
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland; Sensory Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - M G O'Sullivan
- Sensory Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - J P Kerry
- Food Packaging Group, School of Food and Nutritional Science, University College Cork, T12 R220, Ireland.
| | - L Milner
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.
| | - E Gallagher
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.
| | - K N Kilcawley
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| |
Collapse
|
14
|
Garvey EC, O’Sullivan MG, Kerry JP, Kilcawley KN. Optimisation of HS-SPME Parameters for the Analysis of Volatile Compounds in Baked Confectionery Products. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01740-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|