1
|
Lin L, Qian X, He J, Shao Y, Zeng Y, Tang M, Fang Y, Jiang X, Ding J. Improving physicochemical properties and gel formation mechanism of nutty plant-based yogurt with Tremella fuciformis polysaccharides. Food Chem 2025; 466:142255. [PMID: 39615362 DOI: 10.1016/j.foodchem.2024.142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
Developing nutty plant-based yogurt (NPBY) with desired texture and sensory properties has been challenging. This study sought to investigate the effects of Tremella fuciformis polysaccharides (TFPS) on the physicochemical, textural, rheological, and microstructural properties of NPBY. The introduction of TFPS enhanced the accumulation of organic acids, water holding capacity, and antioxidant activity. The firmness of NPBY with 0.85 % TFPS increased from 187.77 × 10-3 N to 259.90 × 10-3 N, with significant enhancements in elastic modulus (G', G'') and apparent viscosity. Furthermore, the introduction of 0.85 % TFPS significantly improved liking scores in sensory evaluations. Microstructural analysis revealed that TFPS promoted the formation of proteins and oil body clusters, resulting in a more compact gel network. The synergetic effects of electrostatic and hydrophobic interactions were identified as primary driving forces for NPBY gel formation. This study provides valuable insights into the role of natural polysaccharides in strengthening plant-based yogurt gel.
Collapse
Affiliation(s)
- Ling Lin
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiaoqing Qian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Junyu He
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yuting Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yao Zeng
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mengxin Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China..
| |
Collapse
|
2
|
Linares-Castañeda A, Jiménez-Martínez C, Sánchez-Chino XM, Pérez-Pérez V, Cid-Gallegos MS, Corzo-Ríos LJ. Modifying of non-nutritional compounds in legumes: Processing strategies and new technologies. Food Chem 2025; 463:141603. [PMID: 39405829 DOI: 10.1016/j.foodchem.2024.141603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 11/14/2024]
Abstract
Legumes are consumed worldwide, are notable for their nutritional quality, however, contain certain non-nutritional compounds (NNCs) that can affect the absorption of nutrients, though these may exhibit bioactive properties. Various processing methods can modify the concentration of NNCs, including soaking and germination. These methods can be combined with other thermal, non-thermal, and bioprocessing treatments to enhance their efficiency. The efficacy of these methods is contingent upon the specific types of NNCs and legume in question. This work examines the effectiveness of these processing methods in terms of modifying the concentration of NNCs present in legumes as well as the potential use of emerging technologies, to enhance the level of NNCs modification in legumes. These technologies could increase the functional use of legume flours, potentially leading to new opportunities for incorporating legume-based ingredients in a range of culinary applications, thereby enhancing the diets of many individuals worldwide.
Collapse
Affiliation(s)
- Alejandra Linares-Castañeda
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Xariss M Sánchez-Chino
- Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carr. Villahermsa-Reforma Km 15.5 S/N. Rancheria Guineo 2ª sección CP. 86280 Villahermosa,Tabasco, Mexico
| | - Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - María Stephanie Cid-Gallegos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico.
| |
Collapse
|
3
|
Stringari A, Polo A, Rizzello CG, Arora K, Racinelli F, Ampollini M, Gobbetti M, Di Cagno R. Successful combination of lactic acid bacteria and yeast fermentation and enzymatic treatment to re-cycle industrial bread by-products for bread making. N Biotechnol 2024; 84:S1871-6784(24)00556-9. [PMID: 39551233 DOI: 10.1016/j.nbt.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Bread industry generates significant amounts of by-products which are discarded every day with relevant economic and environmental repercussions, despite they still contain high concentrations of potentially exploitable nutrients. Aiming to develop new sustainable solutions, this study explored the synergistic application of enzymatic treatment and sourdough fermentation to re-cycle industrial bread by-products for new sourdough bread making. Lactiplantibacillus plantarum SD69.B2 and Saccharomyces cerevisiae SD69.E3 were used as starters, while α-amylase, amyloglucosidase and protease were assessed for their ability to hydrolyze starch and proteins, providing more available carbon and nitrogen sources for the microorganisms. The bread waste-based sourdoughs made by combining protease and L. plantarum SD69.B2 alone or in combination with S. cerevisiae SD69.E3 were selected based on acidification and growth kinetics, and their biochemical, amino acid, and peptide profiles were also characterized demonstrating promising properties. Therefore, they were used, at different percentages, for bread making. Although a slightly acidic pH and a low leavening power, due to the denatured proteins and gelatinized starch in the bread by-products, the texture and sensory analyses of new breads revealed better textural attributes, smell, acidic taste, and overall acceptability compared to the control. The possible reasons behind such features were discussed. The overall results demonstrated that the approach proposed in this study was effective to valorize bread by-products, and it represents a starting point to develop strategies responding to the current perspective of circular economy in food industry.
Collapse
Affiliation(s)
- Alessandro Stringari
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy.
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | | | - Kashika Arora
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy.
| | | | | | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| |
Collapse
|
4
|
Nandan A, Koirala P, Dutt Tripathi A, Vikranta U, Shah K, Gupta AJ, Agarwal A, Nirmal N. Nutritional and functional perspectives of pseudocereals. Food Chem 2024; 448:139072. [PMID: 38547702 DOI: 10.1016/j.foodchem.2024.139072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/24/2024]
Abstract
An increase in the consumption of carbohydrate-rich cereals over past few decades has led to increased metabolic disorders in population. This nutritional imbalance in diets may be corrected by substituting cereal grains with pseudocereals that are richer in high-quality proteins, dietary fibers, unsaturated fats, and bioactive compounds (e.g., polyphenols and phytosterols) as compared to cereal grains. These nutrients have been associated with numerous health benefits, such as hypolipidemic, anti-inflammatory, anti-hypertensive, anti-cancer, and hepatoprotective properties, and benefits against obesity and diabetes. In this review, the nutritional composition and health benefits of quinoa, amaranth, and buckwheat are compared against wheat, maize, and rice. Subsequently, the processing treatments applied to quinoa, amaranth, and buckwheat and their applications into food products are discussed. This is relevant since there is substantial market potential for both pseudocereals and functional foods formulated with pseudocereals. Despite clear benefits, the current progress is slowed down by the fact that the cultivation of these pseudocereals is limited to its native regions. Therefore, to meet the global needs, it is imperative to support worldwide cultivation of these nutrient-rich pseudocereals.
Collapse
Affiliation(s)
- Alisha Nandan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Urvashi Vikranta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | | | - Aparna Agarwal
- Department of Food and Nutrition and Food Technology, Lady Irwin College, University of Delhi, New Delhi, India.
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
5
|
Huang H, Wang Q, Tan J, Zeng C, Wang J, Huang J, Hu Y, Wu Q, Wu X, Liu C, Ye X, Fan Y, Sun W, Guo Z, Peng L, Zou L, Xiang D, Song Y, Zheng X, Wan Y. Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38993144 DOI: 10.1080/10408398.2024.2370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.
Collapse
Affiliation(s)
- Huange Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianxin Tan
- Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, China
| | - Chunxiang Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Junying Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhanbin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Sabater C, Sáez GD, Suárez N, Garro MS, Margolles A, Zárate G. Fermentation with Lactic Acid Bacteria for Bean Flour Improvement: Experimental Study and Molecular Modeling as Complementary Tools. Foods 2024; 13:2105. [PMID: 38998611 PMCID: PMC11241767 DOI: 10.3390/foods13132105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Pulses are considered superfoods for the future world due to their properties, but they require processing to reduce antinutritional factors (ANFs) and increase bioactivity. In this study, bean flour (Phaseolus vulgaris L.) was fermented under different conditions (addition of Lactiplantibacillus plantarum CRL 2211 and/or Weissella paramesenteroides CRL 2182, temperature, time and dough yield) to improve its nutri-functional quality. Fermentation for 24 h at 37 °C with the mixed starter increased the lactic acid bacteria (LAB) population, acidity, polyphenol content (TPC) and ANF removal more than spontaneous fermentation. Statistical and rep-PCR analysis showed that fermentation was mainly conducted by Lp. plantarum CRL 2211. Metabolic modeling revealed potential cross-feeding between Lp. plantarum and W. paramesenteroides, while the molecular docking and dynamic simulation of LAB tannases and proteinases involved in ANF removal revealed their chemical affinity to gallocatechin and trypsin inhibitors. Fermentation was better than soaking, germination and cooking for enhancing bean flour properties: it increased the free amino acids content by 50% by releasing glutamine, glutamic acid, arginine, leucine and lysine and modified TPC by increasing gallic acid and decreasing caffeic, ferulic and vanillic acids and quercetin-3-glucoside. The combination of experimental and simulation data may help us to understand fermentation processes and to design products with desirable features.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA), Spanish National Research Council (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Gabriel D Sáez
- Laboratory of Technological Ecophysiology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina
- Department of Food Microbiology, University of San Pablo Tucumán, Av. Solano Vera y Camino a Villa Nougués, San Pablo 4129, Tucumán, Argentina
| | - Nadia Suárez
- Laboratory of Technological Ecophysiology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - Marisa S Garro
- Laboratory of Technological Ecophysiology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA), Spanish National Research Council (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Gabriela Zárate
- Laboratory of Technological Ecophysiology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina
- Department of Food Microbiology, University of San Pablo Tucumán, Av. Solano Vera y Camino a Villa Nougués, San Pablo 4129, Tucumán, Argentina
| |
Collapse
|
7
|
Cacak-Pietrzak G, Sujka K, Księżak J, Bojarszczuk J, Ziarno M, Studnicki M, Krajewska A, Dziki D. Assessment of Physicochemical Properties and Quality of the Breads Made from Organically Grown Wheat and Legumes. Foods 2024; 13:1244. [PMID: 38672916 PMCID: PMC11049594 DOI: 10.3390/foods13081244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to explore the feasibility of substituting wheat flour with varying levels (10%, 15%, 20%, and 25%) of flour derived from field bean, chickpea, lentil, and pea seeds. The investigation focused on assessing the physical properties of wheat dough and the physicochemical characteristics of bread samples. The addition of legume seed flours significantly influenced the dough's development time, particularly with chickpea flour causing a notable increase in this parameter. While dough stability was generally shorter for mixtures containing wheat flour and legume seed flour, chickpea flour was an exception, significantly prolonging dough stability time. Furthermore, the inclusion of legume flours resulted in increased protein, ash, fiber, fat, and phenolic contents in the enriched bread, while the carbohydrate content decreased. Additionally, the crumb exhibited increased redness and yellowness and decreased lightness due to the enrichment of the bread. Notably, the antioxidant activity of bread containing legume flour also increased, with the most significant increase observed when pea flour was utilized. Conversely, negative effects on bread volume, crumb density, and texture parameters were noted with the incorporation of legume additives. Taking into consideration the results of both physicochemical analyses and sensory evaluation, it is recommended that the incorporation of the specified legume flours should not exceed 15% in relation to the quantity of wheat flour used.
Collapse
Affiliation(s)
- Grażyna Cacak-Pietrzak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Katarzyna Sujka
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Jerzy Księżak
- Department of Forage Crop Production, Institute of Soil Sciences and Plant Cultivation—State Research Institute, 8 Czartoryskich Street, 24-100 Pulawy, Poland; (J.K.); (J.B.)
| | - Jolanta Bojarszczuk
- Department of Forage Crop Production, Institute of Soil Sciences and Plant Cultivation—State Research Institute, 8 Czartoryskich Street, 24-100 Pulawy, Poland; (J.K.); (J.B.)
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland; (G.C.-P.); (K.S.); (M.Z.)
| | - Marcin Studnicki
- Department of Biometry, Institute of Agricuture, Warsaw University of Life Sciences, 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
8
|
Xu J, Fan X, Xu X, Deng D, Yang L, Song H, Liu H. Microfluidization improved hempseed yogurt's physicochemical and storage properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2252-2261. [PMID: 37971866 DOI: 10.1002/jsfa.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Plant-based yogurts are suffering from the common problems, such as an unattractive color, stratified texture state and rough taste. Therefore, it is urgent to develop a novel processing method to improve the quality and extend the storage life of hempseed yogurt. In the present study, hempseed yogurt was microfluidized prior to fermentation. The effects of microfluidization on microstructure, particle size, mechanical properties, sensory acceptability, variations in pH and titratable acidity, lactic acid bacteria (LAB) counts, and stability of hempseed yogurt during 20 days of storage were investigated. RESULTS Microfluidization contributed to the production of hempseed yogurt as a result of the better physicochemical properties compared to normal homogenization. Specifically, microfluidization reduced the particle size of hempseed yogurt with a uniform particle distribution, increased water holding capacity, and improved texture and rheological properties. These advancements resulted in higher sensory scores for the yogurt. Furthermore, during storage, microfluidization effectively inhibited the post-acidification process of hempseed yogurt, and increased LAB counts and storage stability. CONCLUSION Microfluidization improved the physicochemical properties and storage stability of hempseed yogurt. Our findings support the application of microfluidization in hempseed yogurt and provide a new approach for enhancing the quality of plant-based alternatives that meet consumers' demands for high-quality food products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xiangrong Fan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Daozi Deng
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
9
|
Espinosa Páez E, Hernández-Luna CE, Longoria-García S, Torres-Alvarez C, Velez-Argumedo C, González-Martínez BE. Improving nutritional and functional quality characteristics in bread by using flours obtained from fermentation of kidney beans and oats with Pleurotus ostreatus. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2173305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Edith Espinosa Páez
- Departamento de Nutrición, Universidad de Monterrey, San Pedro Garza García, México
| | - Carlos E. Hernández-Luna
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | | | | | | | | |
Collapse
|
10
|
Montemurro M, Beccaccioli M, Perri G, Rizzello CG, Reverberi M, Pontonio E. A chestnut-hemp type-II sourdough to improve technological, nutritional, and sensory properties of gluten-free bread. Int J Food Microbiol 2023; 404:110322. [PMID: 37454506 DOI: 10.1016/j.ijfoodmicro.2023.110322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The nutritional quality of gluten-free (GF) products is usually improved by using flours derived from alternative grains (e.g., pseudocereals and legumes), additives and hydrolysates, leading to long ingredient lists in the labels, that conflict with current customer expectations. In this work, chestnut, carob, and hemp flours were used as mixed ingredients for making a gluten-free type-II sourdough. Three exopolysaccharides-producer lactic acid bacteria, belonging to Leuconostoc mesenteroides, Weissella cibaria, and Leuconostoc pseudomesenteroides, were used, and the fermentation processes (6 log10 cfu/g, 25 °C, 16 h) optimize to maximize the EPS synthesis (15.70 ± 2.1 mg/kg). The chestnut-hemp (70:30) type-II sourdough was included in a rice/corn gluten-free bread recipe also containing psyllium flour as structuring agent. Although the fortification with unfermented flours already led the achievement of 6 g/100 g of fiber (high fiber, Regulation EC n. 1924/2006) and content of magnesium higher than the daily reference intakes, the use of type-II sourdoughs led to a further structural, sensory, and nutritional improvements (e.g., decreasing the main anti-nutritional factor phytic acid). This work demonstrated that the use of ad-hoc selected ingredients and optimized protocol can be used to produce a GF and "clean label" bread with optimal nutritional features and appreciable sensory and structural properties.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy; National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy
| | - Marzia Beccaccioli
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Perri
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Massimo Reverberi
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
11
|
Hitache Z, Al-Dalali S, Pei H, Cao X. Review of the Health Benefits of Cereals and Pseudocereals on Human Gut Microbiota. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
De Guidi I, Legras JL, Galeote V, Sicard D. Yeast domestication in fermented food and beverages: past research and new avenues. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Abad AV, Manzanares P, Marcos JF, Martínez-Culebras PV. The Penicillium digitatum antifungal protein PdAfpB shows high activity against mycobiota involved in sliced bread spoilage. Food Microbiol 2023; 109:104142. [DOI: 10.1016/j.fm.2022.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
|
14
|
Montemurro M, Verni M, Rizzello CG, Pontonio E. Design of a Plant-Based Yogurt-Like Product Fortified with Hemp Flour: Formulation and Characterization. Foods 2023; 12:485. [PMID: 36766014 PMCID: PMC9914809 DOI: 10.3390/foods12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Plant-based milk alternatives have gained massive popularity among consumers because of their sustainable production compared to bovine milk and because of meeting the nutritional requests of consumers affected by cow milk allergies and lactose intolerance. In this work, hemp flour, in a blend with rice flour, was used to design a novel lactose- and gluten-free yogurt-like (YL) product with suitable nutritional, functional, and sensory features. The growth and the acidification of three different lactic acid bacteria strains were monitored to better set up the biotechnological protocol for making the YL product. Hemp flour conferred the high fiber (circa 2.6 g/100 g), protein (circa 4 g/100 g), and mineral contents of the YL product, while fermentation by selected lactic acid bacteria increased the antioxidant properties (+8%) and the soluble fiber (+0.3 g/100 g), decreasing the predicted glycemic index (-10%). As demonstrated by the sensory analysis, the biotechnological process decreased the earthy flavor (typical of raw hemp flour) and increased the acidic and creamy sensory perceptions. Supplementation with natural clean-label vanilla powder and agave syrup was proposed to further decrease the astringent and bitter flavors. The evaluation of the starter survival and biochemical properties of the product under refrigerated conditions suggests an estimated shelf-life of 30 days. This work demonstrated that hemp flour might be used as a nutritional improver, while fermentation with a selected starter represents a sustainable and effective option for exploiting its potential.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
15
|
Antioxidant and Functional Features of Pre-Fermented Ingredients Obtained by the Fermentation of Milling By-Products. FERMENTATION 2022. [DOI: 10.3390/fermentation8120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of milling by-products as ingredients in food formulations has increased gradually over the past years, due to their well-recognized health properties. Fermentation performed with selected microbial strains or microbial consortia is the most promising way to reduce antinutritional factors of cereals and bran, while increasing their nutritional and functional properties. This work, developed within the BBI project INGREEN, was aimed to study the functional, nutritional and technological features of a pre-fermented ingredient obtained from the fermentation of a mixture of rye bran and wheat germ by a selected microbial consortium composed of yeasts (Kazachstania unispora and Kazachstania servazii) and lactic acid bacteria (Latilactobacillus curvatus) using as reference the unfermented mixture and the same mixture fermented by a baker’s yeast. The selected microbial consortium improved the complexity of the volatile molecules such as acids, alcohols and esters. A better retention of color parameters was maintained compared to the product fermented by a baker’s yeast. In addition, the fermentation by the selected consortium showed a significant increase in short chain fatty acids (more than 5-fold), antioxidant activity (22–24%), total phenol content (53–71%), bioactive peptides (39–52%), a reduction of 20–28% in phytic acid content and an increase in prebiotic activity not only compared to the unfermented product but also compared to the preferment obtained with a baker’s yeast. Overall, the fermentation by the selected microbial consortium can be considered a valuable way to valorize milling by-products and promote their exploitation as food ingredients.
Collapse
|
16
|
Wang Y, Rosa-Sibakov N, Edelmann M, Sozer N, Katina K, Coda R. Enhancing the utilization of rapeseed protein ingredients in bread making by tailored lactic acid fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Szabo K, Mitrea L, Călinoiu LF, Teleky BE, Martău GA, Plamada D, Pascuta MS, Nemeş SA, Varvara RA, Vodnar DC. Natural Polyphenol Recovery from Apple-, Cereal-, and Tomato-Processing By-Products and Related Health-Promoting Properties. Molecules 2022; 27:7977. [PMID: 36432076 PMCID: PMC9697562 DOI: 10.3390/molecules27227977] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Polyphenols of plant origin are a broad family of secondary metabolites that range from basic phenolic acids to more complex compounds such as stilbenes, flavonoids, and tannins, all of which have several phenol units in their structure. Considerable health benefits, such as having prebiotic potential and cardio-protective and weight control effects, have been linked to diets based on polyphenol-enriched foods and plant-based products, indicating the potential role of these substances in the prevention or treatment of numerous pathologies. The most representative phenolic compounds in apple pomace are phloridzin, chlorogenic acid, and epicatechin, with major health implications in diabetes, cancer, and cardiovascular and neurocognitive diseases. The cereal byproducts are rich in flavonoids (cyanidin 3-glucoside) and phenolic acids (ferulic acid), all with significant results in reducing the incidence of noncommunicable diseases. Quercetin, naringenin, and rutin are the predominant phenolic molecules in tomato by-products, having important antioxidant and antimicrobial activities. The present understanding of the functionality of polyphenols in health outcomes, specifically, noncommunicable illnesses, is summarized in this review, focusing on the applicability of this evidence in three extensive agrifood industries (apple, cereal, and tomato processing). Moreover, the reintegration of by-products into the food chain via functional food products and personalized nutrition (e.g., 3D food printing) is detailed, supporting a novel direction to be explored within the circular economy concept.
Collapse
Affiliation(s)
- Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Diana Plamada
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
18
|
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Hou D, Feng Q, Tang J, Shen Q, Zhou S. An update on nutritional profile, phytochemical compounds, health benefits, and potential applications in the food industry of pulses seed coats: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:1960-1982. [PMID: 35930027 DOI: 10.1080/10408398.2022.2105303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pulses, as a sustainable source of nutrients, are an important choice for human diets, but vast quantities of seed coats generated in pulses processing are usually discarded or used as low-value ruminant feed. It has been demonstrated that pulses seed coats are excellent sources of dietary nutrients and phytochemicals with potential health benefits. With growing interest in the sustainable use of resources and the circular economy, utilization of pulses seed coats to recover these valuable components is a core objective for their valorization and an important step toward agricultural sustainability. This review comprehensively provides a comprehensive insight on the nutritional and phytochemical profiles presented in pulses seed coats and their health benefits obtained from the findings of in vitro and in vivo studies. Furthermore, in the food industry, pulses seed coats can be acted as potential food ingredients with nutritional, antioxidant and antimicrobial characteristics or as the matrix or active components of films for food packaging and edible coatings. A better understanding of pulses seed coats may provide a reference for increasing the overall added value and realizing the pulses' sustainable diets.
Collapse
Affiliation(s)
- Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China.,College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jian Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
20
|
Paucar-Menacho LM, Simpalo-López WD, Castillo-Martínez WE, Esquivel-Paredes LJ, Martínez-Villaluenga C. Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes. Foods 2022; 11:foods11111541. [PMID: 35681290 PMCID: PMC9180012 DOI: 10.3390/foods11111541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023] Open
Abstract
Sprouting is an effective treatment for improving nutritional and bioactive properties as well as lowering the anti-nutritional compounds in pseudo-cereals. Enhancing nutritional properties when using sprouted pseudo-cereals flours as a baking ingredient requires tailored formulation. Simplex centroid designs and response surface methodology has been applied in the present study to define the ideal proportions of ternary blends of sprouted kiwicha (SKF), cañihua (SCF) and wheat flours (WF) to simultaneously enhance the content in bioactive compounds (γ-aminobutyric acid, GABA, total soluble phenolic compounds and TSPC), as well as sensory (odor, color, taste and texture) and functional attributes (antioxidant activity, AA) while reducing phytic acid (PA) content of bread. The effect of gastric and intestinal digestion on bioactive compounds, AA, PA and starch hydrolysis was also evaluated. Mixture design allowed for the identification of optimal formulation (5% SKF, 23.1% SCF, 71.9% WF) that can be used to obtain breads with higher content of GABA, TSPC, AA, overall sensorial acceptability (scores > 7) and reduced PA content and glycemic index. Moreover, this study demonstrated that these nutritional and health benefits provided by the replacement of WF by sprouted pseudo-cereal flours remained upon digestion. The results of this study indicated that WF replacement with SKF and SCF is sensory acceptable and improved the nutritional quality of bread.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.); (L.J.E.-P.)
| | - Wilson Daniel Simpalo-López
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.); (L.J.E.-P.)
| | - Williams Esteward Castillo-Martínez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.); (L.J.E.-P.)
| | - Lourdes Jossefyne Esquivel-Paredes
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.D.S.-L.); (W.E.C.-M.); (L.J.E.-P.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91393-9927
| |
Collapse
|
21
|
Pontonio E, Montemurro M, Dingeo C, Rotolo M, Centrone D, Carofiglio VE, Rizzello CG. Design and characterization of a plant-based ice cream obtained from a cereal/legume yogurt-like. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Sourdough performances of the golden cereal Tritordeum: Dynamics of microbial ecology, biochemical and nutritional features. Int J Food Microbiol 2022; 374:109725. [DOI: 10.1016/j.ijfoodmicro.2022.109725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
|
23
|
Ameur H, Cantatore V, Filannino P, Cavoski I, Nikoloudaki O, Gobbetti M, Di Cagno R. Date Seeds Flour Used as Value-Added Ingredient for Wheat Sourdough Bread: An Example of Sustainable Bio-Recycling. Front Microbiol 2022; 13:873432. [PMID: 35516437 PMCID: PMC9062590 DOI: 10.3389/fmicb.2022.873432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Our study proposed date seeds flour (DSF) as an innovative ingredient for sourdough bread production through sustainable bio-recycling. We isolated autochthonous lactic acid bacteria and yeasts from DSF and DSF-derived doughs to build up a reservoir of strains from which to select starters ensuring rapid adaptation and high ecological fitness. The screening based on pro-technological criteria led to the formulation of a mixed starter consisting of Leuconostoc mesenteroides, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae strains, which allowed obtaining a mature type I sourdough after consecutive refreshments, in which an aliquot of the durum wheat flour (DWF) was replaced by DSF. The resulting DSF sourdough and bread underwent an integrated characterization. Sourdough biotechnology was confirmed as a suitable procedure to improve some functional and sensory properties of DWF/DSF mixture formulation. The radical scavenging activity increased due to the consistent release of free phenolics. Perceived bitterness and astringency were considerably diminished, likely because of tannin degradation.
Collapse
Affiliation(s)
- Hana Ameur
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Pasquale Filannino,
| | - Ivana Cavoski
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, Valenzano, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
- Raffaella Di Cagno,
| |
Collapse
|
24
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Clean-label techno-functional ingredients for baking products - a review. Crit Rev Food Sci Nutr 2022; 63:7461-7476. [PMID: 35258383 DOI: 10.1080/10408398.2022.2046541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increased awareness of consumers regarding unfamiliar labels speeded up the ongoing clean label trend. As baking products are widely consumed worldwide, the reduction of non-natural baking aids and improvers is of great interest for consumer's health but also representing a big challenge for food industries. Thus, this paper aims at describing new techno-functional clean label ingredients for baked products and their production processes conditions. Firstly, it includes ingredients such as sustainable protein sources, fat replacers and leavening alternatives. Then, it addresses new process alternatives for producing baking ingredients with natural claim as well as current concepts as the natural fermentation. In particular, molecular and functional modifications of the flour are discussed regarding malting and dry heat treatments. By being considered as green and emerging technologies that improve flour functionality, the resulting ingredients can replace additives. Changes in quality and technological attributes of breads and cakes will be discussed as a consequence of the partial to total replacement of conventional ingredients. This paper provides new alternatives for the baking industry to meet the demand of a growing health-concerned population. In addition, it focused on opening up new possibilities for the food industry to go in line with the consumers' expectations.
Collapse
Affiliation(s)
| | | | | | - Alain Le-Bail
- ONIRIS-GEPEA, Nantes, France
- SFR 4202 IBSM, Nantes, France
| |
Collapse
|
25
|
Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms 2021; 10:microorganisms10010091. [PMID: 35056540 PMCID: PMC8779895 DOI: 10.3390/microorganisms10010091] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Fermentation is widely used in the processing of dairy, meat, and plant products. Due to the growing popularity of plant diets and the health benefits of consuming fermented products, there has been growing interest in the fermentation of plant products and the selection of microorganisms suitable for this process. The review provides a brief overview of lactic acid bacteria (LAB) and their use in fermentation of legumes and legume-based beverages. Its scope also extends to prebiotic ingredients present in legumes and legume-based beverages that can support the growth of LAB. Legumes are a suitable matrix for the production of plant-based beverages, which are the most popular products among dairy alternatives. Legumes and legume-based beverages have been successfully fermented with LAB. Legumes are a natural source of ingredients with prebiotic properties, including oligosaccharides, resistant starch, polyphenols, and isoflavones. These compounds provide a broad range of important physiological benefits, including anti-inflammatory and immune regulation, as well as anti-cancer properties and metabolic regulation. The properties of legumes make it possible to use them to create synbiotic food, which is a source of probiotics and prebiotics.
Collapse
|
26
|
Rossi YE, Vanden Braber NL, Díaz Vergara LI, Montenegro MA. Bioactive Ingredients Obtained from Agro-industrial Byproducts: Recent Advances and Innovation in Micro- and Nanoencapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15066-15075. [PMID: 34878778 DOI: 10.1021/acs.jafc.1c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The agro-industry produces numerous byproducts that are currently underused, and its waste contributes to environmental pollution. These byproducts represent an important and economical source of bioactive ingredients, which can promote the sustainable development of high-value-added functional foods. In this context, micro- and nanoencapsulation systems allow for the incorporation and stabilization of the bioactive agents in foods. This perspective will review recent advances in the use of agro-industrial byproducts as a source of bioactive agents. In addition, the latest advances in micro- and nanoencapsulation to improve the stability, solubility, and bioaccessibility of bioactive agents as functional food ingredients are exposed.
Collapse
Affiliation(s)
- Yanina E Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Noelia L Vanden Braber
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Ladislao I Díaz Vergara
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Mariana A Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| |
Collapse
|
27
|
Martău GA, Teleky BE, Ranga F, Pop ID, Vodnar DC. Apple Pomace as a Sustainable Substrate in Sourdough Fermentation. Front Microbiol 2021; 12:742020. [PMID: 34975780 PMCID: PMC8714949 DOI: 10.3389/fmicb.2021.742020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
Innovations range from food production, land use, and emissions all the way to improved diets and waste management. Global apple production has amounted to over 87 million tons/year, while 18% are processed, resulting in 20-35% (apple fruit fresh weight) apple pomace (AP). Using modern AP management, integrated knowledge in innovative fermentation demonstrates opportunities for reducing environmental pollution and integration into a circular economy. With this association in view, integrating AP flour during sourdough fermentation increases the nutritional value, highlighting a new approach that could guide innovative fermented foods. In this study, the wheat flour (WF) and AP flour were mixed at different ratios, hydrated with water (1:1 w/v), and fermented using a selective culture of Fructilactobacillus florum DSM 22689 and baker's yeast (single and co-culture). Sourdough fermentation was monitored and analyzed for 72 h. Results suggested that AP may be an important source of organic acids and fermentable sugars that increase nutritional sourdough value. AP flour addition in WF had a positive effect, especially in fermentations with 95% WF and 5% AP, mainly in co-culture fermentation.
Collapse
Affiliation(s)
- Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Floricuţa Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ioana Delia Pop
- Department of Land Measurements and Exact Sciences, Horticulture Faculty, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Sáez GD, Sabater C, Fara A, Zárate G. Fermentation of chickpea flour with selected lactic acid bacteria for improving its nutritional and functional properties. J Appl Microbiol 2021; 133:181-199. [PMID: 34863009 DOI: 10.1111/jam.15401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
AIMS To improve the nutri-functional quality of chickpea flour by fermentation with selected lactic acid bacteria (LAB) to formulate functional legume-derived products. METHODS AND RESULTS A Randomized Complete Block Design was carried out to assess the influence of experimental conditions (presence/absence of Lactiplantibacillus plantarum CRL2211 and/or Weissella paramesenteroides CRL2182, temperature, time and dough yield) on LAB population, acidification, antinutritional factors and total phenolic contents (TPCs) of chickpea flour. Fermentation with both strains for 24 h at 37°C produced an increase in LAB (up to 8.9 log CFU/g), acidity (final pH 4.06), TPC (525.00 mg GAE/100 g) and tannin and trypsin inhibitor removal (28.80 mg GAE/100 g and 1.60 mg/g, respectively) higher than the spontaneously fermented doughs. RAPD and Rep-PCR analysis revealed that fermentation was dominated by L. plantarum CRL2211. Molecular docking and dynamics simulations were useful to explain LAB enzyme behaviour during fermentation highlighting the chemical affinity of LAB tannases and proteinases to gallocatechin and trypsin inhibitors. Compared with other processing methods, fermentation was better than soaking, germination and cooking for increasing the techno-functional properties of chickpea flour. Fermented doughs were applied to the manufacture of crackers that contained 81% more TPC and 64% more antioxidant activity than controls. CONCLUSIONS Fermentation for 24 h at 37°C with selected autochthonous LAB was the best method for improving the quality of chickpea flour and derived crackers type cookies. SIGNIFICANCE AND IMPACT OF STUDY Chickpea is suitable for the development of novel functional foods. Fermentation with selected LAB would improve the final product quality and bioactivity. The combination of experimental and simulation approaches can lead to a better understanding of the fermentation processes to enhance the properties of a food matrix.
Collapse
Affiliation(s)
- Gabriel D Sáez
- Laboratorio de Ecofisiología Tecnológica, CERELA-CONICET, Tucumán, Argentina
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Asturias, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agustina Fara
- Laboratorio de Ecofisiología Tecnológica, CERELA-CONICET, Tucumán, Argentina
| | - Gabriela Zárate
- Laboratorio de Ecofisiología Tecnológica, CERELA-CONICET, Tucumán, Argentina.,Universidad de San Pablo Tucumán, Tucumán, Argentina
| |
Collapse
|
29
|
Drakula S, Novotni D, Čukelj Mustač N, Voučko B, Krpan M, Hruškar M, Ćurić D. Alteration of phenolics and antioxidant capacity of gluten-free bread by yellow pea flour addition and sourdough fermentation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Vegan Alternatives to Processed Cheese and Yogurt Launched in the European Market during 2020: A Nutritional Challenge? Foods 2021; 10:foods10112782. [PMID: 34829064 PMCID: PMC8619069 DOI: 10.3390/foods10112782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 01/25/2023] Open
Abstract
Vegan alternatives to cheese (VAC) and yogurt (VAY) are fast-growing markets in Europe due to the increasing interest in plant-based alternatives to dairy products. This study aimed to take a closer look at the year 2020 and accordingly retrieved the nutritional information of dairy cheese and yogurt and their vegan counterparts for comparison. It was found that VAY (n = 182) provide more energy, total fats, and carbohydrates than dairy yogurt (n = 86), while saturated fatty acids (SFAs), sugars, and salt were not different between the two categories. Compared to dairy products (25.6%), 72.9% of the alternative products were declared low/no/reduced allergen, hence providing a larger spectrum of products to respond to consumers’ requirements. VAC (n = 114) showed high versatility of form compared to dairy (n = 115). Nutritionally, VAC have higher total fats, SFAs, and carbohydrates, but lower protein, salt, and sugar than dairy cheese. Food developers will continue to look for clean label solutions to improve the nutritional values of vegan products through the incorporation of natural ingredients, besides enhancing their taste and texture to appeal to flexitarians.
Collapse
|
31
|
Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect.
Collapse
|
33
|
Montemurro M, Pontonio E, Coda R, Rizzello CG. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021; 10:316. [PMID: 33546307 PMCID: PMC7913558 DOI: 10.3390/foods10020316] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
Due to the increasing demand for milk alternatives, related to both health and ethical needs, plant-based yogurt-like products have been widely explored in recent years. With the main goal to obtain snacks similar to the conventional yogurt in terms of textural and sensory properties and ability to host viable lactic acid bacteria for a long-time storage, several plant-derived ingredients (e.g., cereals, pseudocereals, legumes, and fruits) as well as technological solutions (e.g., enzymatic and thermal treatments) have been investigated. The central role of fermentation in yogurt-like production led to specific selections of lactic acid bacteria strains to be used as starters to guarantee optimal textural (e.g., through the synthesis of exo-polysaccharydes), nutritional (high protein digestibility and low content of anti-nutritional compounds), and functional (synthesis of bioactive compounds) features of the products. This review provides an overview of the novel insights on fermented yogurt-like products. The state-of-the-art on the use of unconventional ingredients, traditional and innovative biotechnological processes, and the effects of fermentation on the textural, nutritional, functional, and sensory features, and the shelf life are described. The supplementation of prebiotics and probiotics and the related health effects are also reviewed.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant, and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (E.P.)
| | - Erica Pontonio
- Department of Soil, Plant, and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (E.P.)
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland;
- Helsinki Institute of Sustainability Science, 00014 Helsinki, Finland
| | | |
Collapse
|
34
|
Xie C, Coda R, Chamlagain B, Edelmann M, Varmanen P, Piironen V, Katina K. Fermentation of cereal, pseudo-cereal and legume materials with Propionibacterium freudenreichii and Levilactobacillus brevis for vitamin B12 fortification. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
De Pasquale I, Verni M, Verardo V, Gómez-Caravaca AM, Rizzello CG. Nutritional and Functional Advantages of the Use of Fermented Black Chickpea Flour for Semolina-Pasta Fortification. Foods 2021; 10:182. [PMID: 33477574 PMCID: PMC7831118 DOI: 10.3390/foods10010182] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Pasta represents a dominant portion of the diet worldwide and its functionalization with high nutritional value ingredients, such as legumes, is the most ideal solution to shape consumers behavior towards healthier food choices. Aiming at improving the nutritional quality of semolina pasta, semi-liquid dough of a Mediterranean black chickpea flour, fermented with Lactiplantibacillus plantarum T0A10, was used at a substitution level of 15% to manufacture fortified pasta. Fermentation with the selected starter enabled the release of 20% of bound phenolic compounds, and the conversion of free compounds into more active forms (dihydrocaffeic and phloretic acid) in the dough. Fermented dough also had higher resistant starch (up to 60% compared to the control) and total free amino acids (almost 3 g/kg) contents, whereas antinutritional factors (raffinose, condensed tannins, trypsin inhibitors and saponins) significantly decreased. The impact of black chickpea addition on pasta nutritional, technological and sensory features, was also assessed. Compared to traditional (semolina) pasta, fortified pasta had lower starch hydrolysis rate (ca. 18%) and higher in vitro protein digestibility (up to 38%). Moreover, fortified cooked pasta, showing scavenging activity against DPPH and ABTS radicals and intense inhibition of linoleic acid peroxidation, was appreciated for its peculiar organoleptic profile. Therefore, fermentation technology appears to be a promising tool to enhance the quality of pasta and promote the use of local chickpea cultivars while preventing their genetic erosion.
Collapse
Affiliation(s)
- Ilaria De Pasquale
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus Universitario de Cartuja, University of Granada, E-18071 Granada, Spain;
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva s/n, E-18071 Granada, Spain;
| | | |
Collapse
|
36
|
Yeast Biodiversity in Fermented Doughs and Raw Cereal Matrices and the Study of Technological Traits of Selected Strains Isolated in Spain. Microorganisms 2020; 9:microorganisms9010047. [PMID: 33375367 PMCID: PMC7824024 DOI: 10.3390/microorganisms9010047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Bakers use pure microorganisms and/or traditional sourdoughs as the leavening agent for making bread. The performance of each starter and the substances produced by the microorganisms greatly affect the dough rheology and features of breads. Modern sourdoughs inoculated with selected lactic acid bacteria and yeasts are microbiologically stable, safer than traditional sourdoughs, and easy to use. However, the commercial repertoire of baker’s yeasts is still limited. Therefore, there is a demand for new strains of yeast species, capable of conferring distinctive traits to breads made from a variety of agri-food matrices, in the design of innovative starters. In this context, we report the first comprehensive study on yeasts isolated from a wide range of fermented doughs, cereal flours, and grains of Spain. Nine yeast species were identified from 433 isolates, which were distributed among separate clades. Moreover, phenotypic traits of potential technological relevance were identified in selected yeast strains. Mother doughs (MDs) showed the greatest yeast biodiversity, whereas commercial Saccharomyces starters or related and wild strains often dominated the bakery doughs. A metataxonomic analysis of wheat and tritordeum MDs revealed a greater richness of yeast species and percentage variations related to the consistency, flour type, and fermentation time of MDs.
Collapse
|
37
|
Shah S, Brown PDS, Mayengbam S, Gänzle MG, Wang W, Mu C, Lettrari S, Bertagnolli C, Shearer J. Metabolic and Gut Microbiota Responses to Sourdough Pasta Consumption in Overweight and Obese Adults. Front Nutr 2020; 7:615003. [PMID: 33425978 PMCID: PMC7785823 DOI: 10.3389/fnut.2020.615003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
Increasing consumer interest in fermented products has driven the emergence of a number of novel foods including shelf-stable sourdough pasta. This study comprehensively examined the impact of fermentation on the microbial composition of the culture, pasta, its subsequent effects on glycemic responses and gut microbiota in overweight men and women (>25 kg/m2) compared to a conventional, non-fermented pasta. Two, randomized crossover trials were performed. Study A examined acute feeding responses to each product wherein fasted participants completed a meal tolerance test comprised of 75 g of conventional or sourdough pasta to examine glycemic responses. Results showed enhanced gastric emptying with sourdough, but no difference in overall blood glucose, insulin or satiety hormone responses between the treatments. Study B consisted of three standard oral glucose tolerance tests as well as fecal collection for sequencing at baseline and following each pasta intervention (150 g or 2 serving/d for 5 days) followed by a 2-week washout period. Results showed no differential impact of either pasta treatment on glucose tolerance. Analysis of fecal bacterial and fungal (mycobiome) microbiota showed no change at the individual species or genus levels. However, fungi were adaptive following chronic pasta consumption with decreases in alpha diversity of fungi following sourdough, but not conventional pasta. This was accompanied by reductions in total fecal short chain fatty acid concentrations. In conclusion, sourdough fermentation did not change the overall glycemic properties of the pasta, incretin responses or bacterial gut microbiota, but appears to impact microbiome fungal community structure with chronic consumption.
Collapse
Affiliation(s)
- Shrushti Shah
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Paul D S Brown
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Shyamchand Mayengbam
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Weilan Wang
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Chunlong Mu
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | | | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Pontonio E, Verni M, Dingeo C, Diaz-de-Cerio E, Pinto D, Rizzello CG. Impact of Enzymatic and Microbial Bioprocessing on Antioxidant Properties of Hemp ( Cannabis sativa L.). Antioxidants (Basel) 2020; 9:antiox9121258. [PMID: 33321939 PMCID: PMC7763576 DOI: 10.3390/antiox9121258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Although the hemp seed boasts high nutritional and functional potential, its use in food preparations is still underestimated due to scarce technological properties and the presence of several anti-nutritional factors. Here, an optimization of a biotechnological protocol aimed at improving the antioxidant properties and the protein digestibility of the whole hemp seed has been proposed. Processing based on the use of commercial food grade enzymes and ad hoc selected lactic acid bacteria was tested and the phenolic and protein profiles were investigated through an integrated approach including selective extraction, purification, and identification of the potentially active compounds. The influence of the bioprocessing on the antioxidant activity of the hemp was evaluated both in vitro and on human keratinocytes. The lactic acid bacteria fermentation was the best method to significantly improve the antioxidant potential of the hemp through intense proteolysis which led to both the release of bioactive peptides and the increase in the protein digestibility. Moreover, changes in the phenolic profile allowed a significant protective effect against oxidative stress measured on the human keratinocyte cell line.
Collapse
Affiliation(s)
- Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Giovanni Amendola 165/A, 70126 Bari, Italy; (M.V.); (C.D.)
- Correspondence: ; Tel.: +39-080-5442950
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Giovanni Amendola 165/A, 70126 Bari, Italy; (M.V.); (C.D.)
| | - Cinzia Dingeo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Giovanni Amendola 165/A, 70126 Bari, Italy; (M.V.); (C.D.)
| | | | - Daniela Pinto
- Giuliani S.p.A., Pelagio Palagi, 2, 20129 Milan, Italy;
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
39
|
Leuconostoc citreum TR116 as a Microbial Cell Factory to Functionalise High-Protein Faba Bean Ingredients for Bakery Applications. Foods 2020; 9:foods9111706. [PMID: 33233728 PMCID: PMC7699874 DOI: 10.3390/foods9111706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Grain legumes, such as faba beans, have been investigated as promising ingredients to enhance the nutritional value of wheat bread. However, a detrimental effect on technological bread quality was often reported. Furthermore, considerable amounts of antinutritional compounds present in faba beans are a subject of concern. Sourdough-like fermentation can positively affect baking performance and nutritional attributes of faba bean flours. The multifunctional lactic acid bacteria strain Leuconostoc citreum TR116 was employed to ferment two faba bean flours with different protein contents (dehulled flour (DF); high-protein flour (PR)). The strain’s fermentation profile (growth, acidification, carbohydrate metabolism and antifungal phenolic acids) was monitored in both substrates. The fermentates were applied in regular wheat bread by replacing 15% of wheat flour. Water absorption, gluten aggregation behaviour, bread quality characteristics and in vitro starch digestibility were compared to formulations containing unfermented DF and PR and to a control wheat bread. Similar microbial growth, carbohydrate consumption as well as production of lactic and acetic acid were observed in both faba bean ingredients. A less pronounced pH drop as well as a slightly higher amount of antifungal phenolic acids were measured in the PR fermentate. Fermentation caused a striking improvement of the ingredients’ baking performance. GlutoPeak measurements allowed for an association of this observation with an improved gluten aggregation. Given its higher potential to improve protein quality in cereal products, the PR fermentate seemed generally more promising as functional ingredient due to its positive impact on bread quality and only moderately increased starch digestibility in bread.
Collapse
|
40
|
Impact of Germination and Fermentation on Rheological and Thermo-Mechanical Properties of Wheat and Triticale Flours. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Common cereal processing through germination and fermentation usually has an important impact on the technological performance of the flours, mainly because of the activation of endogenous enzymes acting on macromolecules. The aim of the present study is to estimate the effect of germination and fermentation, using a mixture of Lactobacillus casei and Kluyveromyces marxianus subsp. marxianus, on the rheological properties of different wheat and triticale varieties. Moreover, the thermo-mechanical behaviour of the white wheat flour-based dough, including germinated grain flour or sourdough was also tested. Grains germination and sourdough fermentation exerted a high influence on the rheological behaviour of the flour-based suspensions. Germination affected the structure and stability of the suspensions, resulting in samples with viscous behaviour prevailing over the elastic one. The temperature ramp tests revealed that germination together with fermentation lead to higher resistance to temperature changes. In agreement with the results of the rheological investigations on rheometer, the Mixolab test performed on flour obtained from germinated grains revealed lower dough stability and protein weakening at temperature increase. On the other hand, a significant improvement of the pasting properties of the dough was obtained when adding sourdoughs to the wheat flour.
Collapse
|
41
|
Effect of the Leavening Agent on the Compositional and Sensorial Characteristics of Bread Fortified with Flaxseed Cake. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Health and well-being improvement is currently driving innovation in bread, using a wide variety of value-added compounds as extra ingredients, including food industry by-products in a circular economy concept. In this context, this research aimed at evaluating the effect of the fortification of bread with different percentages of flaxseed cake, comparing two leavening agents: sourdough and baker’s yeast. Sensorial, physicochemical, and nutritional properties, including pH, the main fermentative metabolites, fatty acids, total phenols, antioxidant capacity, and volatile organic compounds were determined for fortified bread. The results showed a significant improvement of nutraceutical profile of the bread fortified with flaxseed cake in a dose-dependent manner. Regardless of the leavening agent, the fortification determined a decrease of n-6:n-3 ratio, reaching the recommended value (<3) already at the 7.5% level. Furthermore, under the same fortification level, sourdough breads showed a higher level of total phenols and antiradical activity than baker’s yeast breads. Sensory profiles were instead deeply influenced by both the fortification percentage and the leavening agents. In conclusion, considering both nutritional and sensory results, the best formulation as a function of leavening agent utilized was defined as 5% and 7.5% when sourdough and baker’s yeast were used, respectively.
Collapse
|
42
|
Pontonio E, Raho S, Dingeo C, Centrone D, Carofiglio VE, Rizzello CG. Nutritional, Functional, and Technological Characterization of a Novel Gluten- and Lactose-Free Yogurt-Style Snack Produced With Selected Lactic Acid Bacteria and Leguminosae Flours. Front Microbiol 2020; 11:1664. [PMID: 32765471 PMCID: PMC7379130 DOI: 10.3389/fmicb.2020.01664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
Aiming at meeting consumers' requirements for healthy foods, dietary needs (vegetarianism, lactose- and gluten-free), as well as the nutrition recommendations of the Health Authorities in terms of protein, fibers and bioactive compounds, the present study proposes a novel yogurt-style snack made with plant-derived ingredients. The biotechnological protocol includes the fermentation of a thermal-treated blend of cereal and legume flours by the selected lactic acid bacteria (LAB) Lactoplantibacillus plantarum DSM33326 and Levilactobacillus brevis DSM33325. The yogurt-style snack was characterized by protein and fiber concentration of 3 and 4%, respectively, and a low-fat content. Compared to the unfermented control, the yogurt-style snack was characterized by a significant higher concentration of free amino acids and lower contents of the antinutritional factors, i.e., phytic acid, condensed tannins, saponins and raffinose (up to 90%) mainly due to the LAB metabolic activity. Hence, an in-vitro protein digestibility of 79% and improvements of all the nutritional indexes related to the quality of the protein fraction (e.g., GABA) were achieved at the end of fermentation. According to the Harvard Medical School recommendations, the novel snack can be potentially classified as low-glycemic index food (53%). Antioxidant properties of the fermented snack were also improved by means of increased the total phenol content and radical scavenging activity. High survival rate of the starter LAB and a commercial probiotic (added to the snack) was found through 30 days storage under refrigerated conditions. The biotechnological protocol to make the novel snack here proposed is suitable for the large-scale application in food industry, giving a platform product with a peculiar and appreciated sensory profile.
Collapse
Affiliation(s)
- Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Susanna Raho
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Dingeo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | | | | |
Collapse
|
43
|
Reque PM, Pinilla CMB, Tinello F, Corich V, Lante A, Giacomini A, Brandelli A. Biochemical and functional properties of wheat middlings bioprocessed by lactic acid bacteria. J Food Biochem 2020; 44:e13262. [PMID: 32361998 DOI: 10.1111/jfbc.13262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 11/30/2022]
Abstract
The present study aimed to investigate the bioprocessing of wheat middlings with different lactic acid bacteria (LAB) in order to improve biological activities of this by-product of wheat flour production. The concentration of lactic acid, reducing sugars, and total phenolics, as well as antioxidant, antibrowning, antibacterial and prebiotic activities of fermented samples were analyzed. All LAB strains were capable to growth on wheat middlings, and pH decreased in the medium associated with lactic acid production during cultivation. Samples inoculated with Lactobacillus plantarum DSM20174 presented the maximum growth, lactic acid concentration above 2 mg/ml, and pH values around 3.8. The amount or reducing sugars decreased after 24 hr growth, except for maltose. Bioprocessed wheat middlings exhibited antioxidant, antibrowning, antibacterial, and prebiotic properties, related with the increase of total phenolic content. Highest values for antioxidant activities were obtained for L. plantarum and Streptococcus thermophilus strains, reaching values around 400 and 640 μM Trolox equivalents (TE) ml-1 for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power (FRAP) assays, respectively. Bioprocessing techniques using LAB can be an interesting approach to improve the availability of compounds with health-promoting properties from lignocellulosic waste material. PRACTICAL APPLICATIONS: The processing of secondary products from wheat milling can represent an important benefit to the industry. Wheat middlings bioprocessed with LAB showed improved biological activities and may represent an interesting ingredient to be incorporated in food and feed formulations.
Collapse
Affiliation(s)
- Priscilla Magro Reque
- Department of Food Science, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristian Mauricio Barreto Pinilla
- Department of Food Science, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Federica Tinello
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Padova, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Padova, Italy
| | - Anna Lante
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Padova, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Padova, Italy
| | - Adriano Brandelli
- Department of Food Science, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
44
|
Perri G, Calabrese FM, Rizzello CG, De Angelis M, Gobbetti M, Calasso M. Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Textural and Sensory Features Changes of Gluten Free Muffins Based on Rice Sourdough Fermented with Lactobacillus spicheri DSM 15429. Foods 2020; 9:foods9030363. [PMID: 32245079 PMCID: PMC7143808 DOI: 10.3390/foods9030363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Gluten free products available on the market have a low textural quality associated with high crumbly structure, low-flavor, aroma, poor mouthfeel, less appearance, in comparison with the conventional final baked products. The aim of this study was to assess the influence of rice sourdough fermented with Lactobacillus spicheri DSM 15429 strain on textural, volatile profile, and sensorial properties of gluten free muffins in order to obtain baked goods with improved quality characteristics. Lactobacillus spicheri is a novel strain isolated from industrial rice sourdough but unexploited for bakery products manufacturing. The results showed that Lactobacillus spicheri DSM 15429 was able to growth in the rice flour influencing the texture and the volatile profile of gluten free muffins as well as their sensory characteristics. Both, textural parameters and volatiles recorded significant differences comparing to muffins obtained with a spontaneously fermented rice sourdough. Hardness and cohesiveness decreased while springiness and resilience of gluten free muffins improved their values. The volatile profile of gluten free muffins was significantly improved by utilization of the rice sourdough fermented with Lactobacilus spicheri DSM 15429. 3-methylbutanal, 2-methylbutanal, acetophenone and limonene were the main volatile derivatives responsible for aroma and odor scores of sensory analysis.
Collapse
|
46
|
Di Nunzio M, Picone G, Pasini F, Chiarello E, Caboni MF, Capozzi F, Gianotti A, Bordoni A. Olive oil by-product as functional ingredient in bakery products. Influence of processing and evaluation of biological effects. Food Res Int 2019; 131:108940. [PMID: 32247504 DOI: 10.1016/j.foodres.2019.108940] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023]
Abstract
Nowadays, the strong demand for adequate nutrition is accompanied by concern about environmental pollution and there is a considerable emphasis on the recovery and recycling of food by-products and wastes. In this study, we focused on the exploitation of olive pomace as functional ingredient in biscuits and bread. Standard and enriched bakery products were made using different flours and fermentation protocols. After characterization, they were in vitro digested and used for supplementation of intestinal cells (Caco-2), which underwent exogenous inflammation. The enrichment caused a significant increase in the phenolic content in all products, particularly in the sourdough fermented ones. Sourdough fermentation also increased tocol concentration. The increased concentration of bioactive molecules did not reflect the anti-inflammatory effect, which was modulated by the baking procedure. Conventionally fermented bread enriched with 4% pomace and sourdough fermented, not-enriched bread had the greatest anti-inflammatory effect, significantly reducing IL-8 secretion in Caco-2 cells. The cell metabolome was modified only after supplementation with sourdough fermented bread enriched with 4% pomace, probably due to the high concentration of tocopherol that acted synergistically with polyphenols. Our data highlight that changes in chemical composition cannot predict changes in functionality. It is conceivable that matrices (including enrichment) and processing differently modulated bioactive bioaccessibility, and consequently functionality.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- Department of Agricultural and Food Sciences - DISTAL (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences - DISTAL (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Federica Pasini
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Elena Chiarello
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Maria Fiorenza Caboni
- Department of Agricultural and Food Sciences - DISTAL (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences - DISTAL (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences - DISTAL (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences - DISTAL (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
47
|
Summo C, De Angelis D, Ricciardi L, Caponio F, Lotti C, Pavan S, Pasqualone A. Nutritional, physico-chemical and functional characterization of a global chickpea collection. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|