1
|
Liu J, Li H, Yan Y, Zhang Z, Sun YA, Wang G. Preparation and Quaternization of Poly (Styrene-Divinylbenzene) Microspheres Loaded With p-Phenylenediamine-1,3,5-Triformylphloroglucinol Nanoparticles and Utilized as an Anion Exchanger. J Sep Sci 2025; 48:e70137. [PMID: 40208835 DOI: 10.1002/jssc.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/13/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Covalent organic framework (COF) has been popularly utilized to prepare chromatographic stationary phases due to its a great diversity of composition, unique structure, easy of modification, and so forth. However, the irregular shape and nanometer size scale of most COF materials greatly hinders their direct utilization as chromatographic column packing. Herein, poly (styrene-divinylbenzene) loaded with p-phenylenediamine-1,3,5-triformylphloroglucinol nanoparticles that derived from p-phenylenediamine and 1,3,5-triformylphloroglucinol microspheres are constructed by in situ growth method. Then, the imine groups of poly (styrene-divinylbenzene)@p-phenylenediamine-1,3,5-triformylphloroglucinol are reduced to amino groups and followed by quaternized. The microspheres are characterized by using SEM, Fourier transform infrared spectra, N2 adsorption-desorption experiment, and so forth. According to the results, poly (styrene-divinylbenzene)@p-phenylenediamine-1,3,5-triformylphloroglucinol microspheres could perfectly combine and possess the good monodispersity of poly (styrene-divinylbenzene) microspheres and unique functionality of p-phenylenediamine-1,3,5-triformylphloroglucinol nanoparticles. The customized column exhibits good separation properties for conventional anions, organic acids, and carbohydrates.
Collapse
Affiliation(s)
- Junwei Liu
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Haojie Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yuqi Yan
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Zhaorui Zhang
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yu-An Sun
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Guoqing Wang
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Cheng XD, Zhang Z, Li YP, Dai XX. Design and evaluation of C18 stationary phases with different polar-embedded groups for liquid chromatography. Anal Chim Acta 2025; 1338:343585. [PMID: 39832856 DOI: 10.1016/j.aca.2024.343585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
New stationary phases including polar embedded stationary phases that are capable of utilising green mobile phases have recently emerged. This study presents two straightforward strategies for preparing C18 phases with distinct polar-embedded groups: thioether (C18T) and quaternary ammonium (C18Q). The two strategies were assessed based on convenience, cost, yield, and time efficiency. After successful characterization, the phases and commercial C18 phases were thoroughly evaluated using various standard substances and testing protocols. Both C18T and C18Q exhibited excellent wettability in highly aqueous mobile phases and good shape selectivity. C18T which has a low bonding density, demonstrated an impressive level of selectivity in the separation of basic compounds compared to other phases. In comparison, C18Q exhibited enhanced performance in separating acidic compounds, benefiting from the embedded quaternary ammonium groups. The present study proposes a novel approach for constructing polar embedded alkyl stationary phases, which represents a necessary supplement to the existing C18 materials.
Collapse
Affiliation(s)
- Xiao-Dong Cheng
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Zheng Zhang
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yun-Ping Li
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Xue-Xin Dai
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China
| |
Collapse
|
3
|
Chen TH, Chen YS, Hiramatsu H. Raman spectrometer with vertical flow method for solutions containing organic solvents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124679. [PMID: 38906058 DOI: 10.1016/j.saa.2024.124679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
The vertical flow (VF) method improves generation and collection efficiency in Raman spectroscopy. It enhances all Raman signals, including undesired signals of organic solvents having a considerably large Raman cross section. We constructed a Raman spectrometer using the VF method to overcome this drawback and introduced a spatial line rejection mask to eliminate unnecessary bands. In addition, the design of the VF unit was improved to resist organic solvents. A VF unit with a 60-µm pinhole enhanced the signal 168 times. The spatial mask effectively eliminated the large Raman bands of the solvent and enabled a longer exposure time. The increase in the dynamic range improved the signal-to-noise ratio by 10 % in methanol and acetonitrile measurements. Raman spectrometer with the VF method and spatial mask enables us to record the Raman spectrum of solute molecules without the disturbance of solvent bands.
Collapse
Affiliation(s)
- Ting-Hao Chen
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Sheng Chen
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
4
|
Bas TG. Bioactivity and Bioavailability of Carotenoids Applied in Human Health: Technological Advances and Innovation. Int J Mol Sci 2024; 25:7603. [PMID: 39062844 PMCID: PMC11277215 DOI: 10.3390/ijms25147603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This article presents a groundbreaking perspective on carotenoids, focusing on their innovative applications and transformative potential in human health and medicine. Research jointly delves deeper into the bioactivity and bioavailability of carotenoids, revealing therapeutic uses and technological advances that have the potential to revolutionize medical treatments. We explore pioneering therapeutic applications in which carotenoids are used to treat chronic diseases such as cancer, cardiovascular disease, and age-related macular degeneration, offering novel protective mechanisms and innovative therapeutic benefits. Our study also shows cutting-edge technological innovations in carotenoid extraction and bioavailability, including the development of supramolecular carriers and advanced nanotechnology, which dramatically improve the absorption and efficacy of these compounds. These technological advances not only ensure consistent quality but also tailor carotenoid therapies to each patient's health needs, paving the way for personalized medicine. By integrating the latest scientific discoveries and innovative techniques, this research provides a prospective perspective on the clinical applications of carotenoids, establishing a new benchmark for future studies in this field. Our findings underscore the importance of optimizing carotenoid extraction, administration, bioactivity, and bioavailability methods to develop more effective, targeted, and personalized treatments, thus offering visionary insight into their potential in modern medical practices.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Catolica del Norte, Coquimbo 1780000, Chile
| |
Collapse
|
5
|
Zhang Y, Zhao M, Fu C, Zhou S, Han H, Zhang M. Design and evaluation of semicarbazide-embeddedd stationary phases for liquid chromatography. J Chromatogr A 2024; 1720:464782. [PMID: 38442498 DOI: 10.1016/j.chroma.2024.464782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Semicarbazide, as a derivative of urea, constitutes a great variety of functional molecules for different needs. Herein, novel stationary phases with an incorporated semicarbazide group were proposed. Using aliphatic (docosanoyl, C22) and aromatic (benzoyl, Bz) hydrazides, the semicarbazide-embedded ligands were synthesized before chemical modification of the silica gel, allowing for an accurate interpretation of the chromatographic properties of the corresponding packings. The new stationary phases were water-wettable, due to the presence of highly polar groups. In particular, Bz-semicarbazide (Bz-SCD) stationary phase was sufficiently hydrophilic to run in hydrophilic interaction (HILIC) mode, whilst the C22 (C22-SCD) equivalent, in spite of its reversed-phase nature, was markedly less hydrophobic than the referenced polar-embedded ones. The versatility of C22-SCD was demonstrated with a large selection of analytes, including geometric isomers and standard mixtures of polycyclic aromatic hydrocarbons, sulfonamides, sulfonylurea, substituted ureas, pyridines and carbamates, fat-soluble colorants, antifungal metabolites, angiotensin II receptor blockers and calcium channel blockers.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223000, China.
| | - Mingyang Zhao
- Jiangsu Hanbon Science & Technology Co., Ltd., Huai'an 223000, China
| | - Chuanbo Fu
- Jiangsu Hanbon Science & Technology Co., Ltd., Huai'an 223000, China
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223000, China
| | - Haifeng Han
- Jiangsu Hanbon Science & Technology Co., Ltd., Huai'an 223000, China
| | - Mingliang Zhang
- Jiangsu Hanbon Science & Technology Co., Ltd., Huai'an 223000, China.
| |
Collapse
|
6
|
Ling J, Wang T, Xie Z, Cheng X, Chai K, Li P. Preparation, characterization, and separation mechanism of a dehydroabietic-acid-based shape-selective chromatographic stationary phase 1. Talanta 2023; 262:124691. [PMID: 37229814 DOI: 10.1016/j.talanta.2023.124691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Chromatographic stationary phases with molecular-shape selectivity are advantageous for the separation and analysis of geometric isomers. Herein, dehydroabietic acid is bonded on the surface of silica microspheres via 3-glycidoxypropyltrimethoxysilane to form a monolayer dehydroabietic-acid stationary phase (Si-DOMM) with a racket-shaped structure. Various characterization techniques indicate that Si-DOMM is successfully prepared, and the separation performance of a Si-DOMM column is evaluated. The stationary phase has a low silanol activity and metal contamination and a high hydrophobicity and shape selectivity. The resolutions of lycopene, lutein, and capsaicin on the Si-DOMM column confirm that the stationary phase exhibits high shape selectivity. The elution order of n-alkyl benzene on the Si-DOMM column indicates its high hydrophobic selectivity and suggests that the separation is an enthalpy-driven process. Repeatability experiments reveal highly stable preparation processes of the stationary phase and column and indicate that the relative standard deviations of retention time, peak height, and peak area are less than 0.26%, 3.54%, and 3.48%, respectively. Density functional theory calculations using n-alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenols as model solutes provide an intuitive and quantitative description of the multiple retention mechanisms. The Si-DOMM stationary phase exhibits superior retention and high selectivity for these compounds via multiple interactions. The bonding phase of the monolayer dehydroabietic acid stationary phase with a racket-shaped structure has a unique affinity for benzene, strong shape selectivity, and good separation performance for geometrical isomers with different molecular shapes.
Collapse
Affiliation(s)
- Jiaming Ling
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| | - Zhoujian Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Xinqiao Cheng
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518109, China.
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Pengfei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
7
|
Weng LH, Hiramatsu H. Determination of sugar content in honey using LC-Raman and programmable pump-Raman methods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2088-2094. [PMID: 37089037 DOI: 10.1039/d3ay00202k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We combined (i) liquid chromatography and Raman spectrometry (LC-Raman) and (ii) programmable pump and Raman spectrometry (PP-Raman) to separate and identify compounds in a mixture. These techniques were applied to conduct a quantitative analysis of the sugars in honey. The spectral and temporal axes of the LC-Raman data were analyzed using the MCR-ALS analysis procedure, which enabled the separation and identification of four sugars (glucose, fructose, sucrose, and trehalose). The PP-Raman method was employed to examine the sugar concentration dependence of the intensity pattern of the Raman spectrum, and the linear concentration dependence of the intensity was obtained. The sugar contents were quantitatively determined from the integrated area of the elution peaks. The result was consistent with those derived from mass spectrometry and previous studies. The origin of the errors in the derived sugar contents is discussed. Our study presents a novel quantitative LC-Raman spectrometric method that does not rely on resonance or surface enhancement effects.
Collapse
Affiliation(s)
- Liang-Hung Weng
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
8
|
Górnaś P, Baškirovs G, Siger A. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination. Molecules 2022; 27:6560. [PMID: 36235100 PMCID: PMC9573122 DOI: 10.3390/molecules27196560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Free and esterified (bound) tocopherols, tocotrienols and other tocochromanol-related compounds, often referred to "tocols", are lipophilic antioxidants of great importance for health. For instance, α-tocopherol is the only tocochromanol with vitamin E activity, while tocotrienols have a positive impact on health and are proposed in the prevention and therapy of so-called modern diseases. Tocopherols, tocotrienols and plastochromanol-8 are the most well-known tocochromanols; in turn, knowledge about tocodienols, tocomonoenols, and other rare tocochromanol-related compounds is limited due to several challenges in analytical chemistry and/or low concentration in plant material. The presence of free, esterified, and non-extractable tocochromanols in plant material as well as their biological function, which may be of great scientific, agricultural and medicinal importance, is also poorly studied. Due to the lack of modern protocols as well as equipment and tools, for instance, techniques suitable for the efficient and simultaneous chromatographical separation of major and minor tocochromanols, the topic requires attention and new solutions, and/or standardization, and proper terminology. This review discusses the advantages and disadvantages of different chromatographic techniques, tools and approaches used for the separation and detection of different tocochromanols in plant material and foodstuffs. Sources of tocochromanols and procedures for obtaining different tocochromanol analytical standards are also described. Finally, future challenges are discussed and perspective green techniques for tocochromanol determination are proposed along with best practice recommendations. The present manuscript aims to present key aspects and protocols related to tocochromanol determination, correct identification, and the interpretation of obtained results.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia
| | | | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
9
|
Keen B, Cawley A, Reedy B, Fu S. Metabolomics in clinical and forensic toxicology, sports anti-doping and veterinary residues. Drug Test Anal 2022; 14:794-807. [PMID: 35194967 PMCID: PMC9544538 DOI: 10.1002/dta.3245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Metabolomics is a multidisciplinary field providing workflows for complementary approaches to conventional analytical determinations. It allows for the study of metabolically related groups of compounds or even the study of novel pathways within the biological system. The procedural stages of metabolomics; experimental design, sample preparation, analytical determinations, data processing and statistical analysis, compound identification and validation strategies are explored in this review. The selected approach will depend on the type of study being conducted. Experimental design influences the whole metabolomics workflow and thus needs to be properly assessed to ensure sufficient sample size, minimal introduced and biological variation and appropriate statistical power. Sample preparation needs to be simple, yet potentially global in order to detect as many compounds as possible. Analytical determinations need to be optimised either for the list of targeted compounds or a universal approach. Data processing and statistical analysis approaches vary widely and need to be better harmonised for review and interpretation. This includes validation strategies that are currently deficient in many presented workflows. Common compound identification approaches have been explored in this review. Metabolomics applications are discussed for clinical and forensic toxicology, human and equine sports anti-doping and veterinary residues.
Collapse
Affiliation(s)
- Bethany Keen
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Adam Cawley
- Australian Racing Forensic LaboratoryRacing NSWSydneyNew South WalesAustralia
| | - Brian Reedy
- School of Mathematical and Physical SciencesUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Shanlin Fu
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| |
Collapse
|
10
|
López GD, Álvarez-Rivera G, Carazzone C, Ibáñez E, Leidy C, Cifuentes A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Crit Rev Anal Chem 2021; 53:1239-1262. [PMID: 34915787 DOI: 10.1080/10408347.2021.2016366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Natural carotenoids are secondary metabolites that exhibit antioxidant, anti-inflammatory, and anti-cancer properties. These types of compounds are highly demanded by pharmaceutical, cosmetic, nutraceutical, and food industries, leading to the search for new natural sources of carotenoids. In recent years, the production of carotenoids from bacteria has become of great interest for industrial applications. In addition to carotenoids with C40-skeletons, some bacteria have the ability to synthesize characteristic carotenoids with C30-skeletons. In this regard, a great variety of methodologies for the extraction and identification of bacterial carotenoids has been reported and this is the first review that condenses most of this information. To understand the diversity of carotenoids from bacteria, we present their biosynthetic origin in order to focus on the methodologies employed in their extraction and characterization. Special emphasis has been made on high-performance liquid chromatography-mass spectrometry (HPLC-MS) for the analysis and identification of bacterial carotenoids. We end up this review showing their potential commercial use. This review is proposed as a guide for the identification of these metabolites, which are frequently reported in new bacteria strains.
Collapse
Affiliation(s)
- Gerson-Dirceu López
- Chemistry Department, Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Bogotá, Colombia
- Physics Department, Laboratory of Biophysics, Universidad de los Andes, Bogotá, Colombia
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Madrid, Spain
| | | | - Chiara Carazzone
- Chemistry Department, Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Bogotá, Colombia
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Madrid, Spain
| | - Chad Leidy
- Physics Department, Laboratory of Biophysics, Universidad de los Andes, Bogotá, Colombia
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Madrid, Spain
| |
Collapse
|
11
|
Yusuf H, Wijiani N, Rahmawati RA, Primaharinastiti R, Rijal MAS, Isadiartuti D. Analytical method for the determination of curcumin entrapped in polymeric micellar powder using HPLC. J Basic Clin Physiol Pharmacol 2021; 32:867-873. [PMID: 34214361 DOI: 10.1515/jbcpp-2020-0491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Curcumin belongs to the family of curcuminoids, natural polyphenolic compounds that possesses neuroprotective properties, anti inflammatory and anticancer. Its entrapment in the developed casein-based micellar powder (CMP) and poloxamer-based micellar powder (PMP) was to enhance the solubility and improve the bioavailability. Henceforth, the present study aimed to acquire an efficient analytical method for the curcumin analysis in polymeric micellar formulations. METHODS A fast and specific HPLC method was developed for analyzing curcumin in two different micellar matrices using casein and poloxamer. The HPLC was equipped with a C18 column (250 × 4 mm, 5 µm) and diode array detector. A designated isocratic elution of curcumin was employed using mobile phase with a composition of water (1%, v/v acetic acid) and acetonitrile in a ratio of 50:50 v/v. The employed flow rate was 1.0 mL/min and the analyte was examined at 421 nm. RESULTS An effective analysis in HPLC was successfully achieved by the predetermined HPLC condition. A good resolution of peaks at the employed flow rate was achieved. The linearity was excellent in two different range of concentrations, 2-20 and 10-50 μg/mL. The selectivity, accuracy and precision fulfilled the acceptable requirements. CONCLUSIONS The developed method was practically effective to qualitatively identified curcumin. In addition, the assay also effectively quantified the amount of curcumin in the polymeric entrapping matrices which demonstrates that it has great potential to be used in natural compound analysis.
Collapse
Affiliation(s)
- Helmy Yusuf
- Department of Pharmaceutical Sciences, Universitas Airlangga, Surabaya, Indonesia
| | - Nina Wijiani
- Department of Pharmaceutical Sciences, Universitas Airlangga, Surabaya, Indonesia
| | | | | | - M Agus Syamsur Rijal
- Department of Pharmaceutical Sciences, Universitas Airlangga, Surabaya, Indonesia
| | - Dewi Isadiartuti
- Department of Pharmaceutical Sciences, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
12
|
Sobańska AW. Emerging or Underestimated Silica-Based Stationary Phases in Liquid Chromatography. Crit Rev Anal Chem 2020; 51:631-655. [PMID: 32482079 DOI: 10.1080/10408347.2020.1760782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several newly synthesized or forgotten silica-based stationary phases proposed for liquid chromatography are described, including non-endcapped, short-chain alkyl phases; hydrophilic and polar-endcapped stationary phases; polar-embedded alkyl phases; long-chain alkyl phases. Stationary phases with aromatic, cyanopropyl, diol and aminopropyl functionalities are also reviewed. Stationary phases of particular interest are biomolecular materials - based on immobilized cholesterol, aminoacids, peptides, proteins or lipoproteins. Packing materials involving macrocyclic chemistry (crown ethers; calixarenes; aza-macrocycles; oligo-and polysaccharides including these of marine origin - chitin- or chitosan-based; macrocyclic antibiotics) are discussed. Since many stationary phases developed for one type of applications (e.g. chiral separation) have been found useful in solving other analytical problems (e.g. drug's plasma protein binding ability), it seemed reasonable to discuss particular chemistries behind the stationary phases presented in this review rather than specific types of interactions or chromatographic modes.
Collapse
Affiliation(s)
- Anna W Sobańska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|