1
|
Guan T, Gui X, Wu Y, Wang S, Tian L, Liu Q, Wu Y. Aromatic and sensorial profiles of Guichang kiwi wine fermented by indigenous Saccharomyces cerevisiae strains. J Food Sci 2025; 90:e70067. [PMID: 39949255 DOI: 10.1111/1750-3841.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 05/09/2025]
Abstract
The indigenous Saccharomyces cerevisiae (S. cerevisiae) serves as an essential tool for enhancing the sensory and aromatic profiles of fruit wines from specific regions. This study aims to investigate the effects of inoculating indigenous S. cerevisiae strains Sc1, Sc2, and a commercial strain Sy on the physicochemical properties, organic acids, sensory properties, and volatile compounds of Guichang kiwi wines (Sc1 wine, Sc2 wine, Sy wine) compared to unfermented kiwi juice. Compared to Sy wine, the ethanol concentration in Sc1 and Sc2 wines significantly increased, while the total organic acids content decreased, and the sensory properties of alcohol, fruity, and typicality were notably enhanced. Sc1 wine demonstrated the least reduction in vitamin C (VC) concentration and the lowest total organic acids concentration. Additionally, Sc1 wine surpassed Sc2 wine in terms of scores for alcohol, mouth-feel, acidity, floral, fruity, and typicality. A total of 47 volatile compounds were identified in both the juice and wines using the two-dimensional gas chromatography-mass spectrometry (GC × GC-MS) technique. A strong correlation was observed between 16 odor-active compounds and six sensory attributes, while nine aroma-active compounds (VIP > 1) were identified as the crucial differential compounds responsible for the aromatic characteristics of the juice and wines. Fermentation with Sc1 led to increased production of alcohols, ethyl esters, phenylethyl alcohol, and isoamyl acetate, which significantly enhanced floral and fruity flavors. This study provides evidence that fermentation with the indigenous S. cerevisiae strain Sc1 contributes to improving sensory attributes and enhancing aroma quality in Guichang kiwi wine. PRACTICAL APPLICATION: As kiwi wine continues to gain widespread popularity among consumers, there is an increasing preference for the use of indigenous yeast strains in the fermentation process. This study demonstrates that, compared to the indigenous S. cerevisiae strain Sc2 and the commercial strain Sy, the indigenous sourced S. cerevisiae strain Sc1 produced fermented wine with the lowest total organic acids content. Furthermore, it exhibits a greater diversity and concentration of volatile compounds, along with a more pronounced floral and fruity aroma. These findings suggest its potential to enhance both the sensory attributes and aroma quality of Guichang kiwi wine.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Chengdu, PR China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Xuemei Gui
- College of Food and Biological Engineering, Xihua University, Chengdu, PR China
| | - Yao Wu
- College of Food and Biological Engineering, Xihua University, Chengdu, PR China
| | - Shouqin Wang
- College of Food and Biological Engineering, Xihua University, Chengdu, PR China
| | - Lei Tian
- College of Food and Biological Engineering, Xihua University, Chengdu, PR China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Qingru Liu
- College of Food and Biological Engineering, Xihua University, Chengdu, PR China
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Yijiao Wu
- College of Food and Biological Engineering, Xihua University, Chengdu, PR China
| |
Collapse
|
2
|
Hou H, Li Y, Zhou S, Zhang R, Wang Y, Lei L, Yang C, Huang S, Xu H, Liu X, Gao M, Luo J. Compositional Analysis of Grape Berries: Mapping the Global Metabolism of Grapes. Foods 2024; 13:3716. [PMID: 39682788 DOI: 10.3390/foods13233716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
To characterize the nutrients and bioactive compounds in grape berries and to explore the real cause of the "French paradox" phenomenon, we performed metabolomic analysis of 66 grape varieties worldwide using liquid chromatography-tandem mass spectrometry (LC-MS). A nontargeted metabolomics approach detected a total of 4889 metabolite signals. From these, 964 bioactive and nutrient compounds were identified and quantified, including modified flavonoids, medicinal pentacyclic triterpenoids, vitamins, amino acids, lipids, etc. Interestingly, metabolic variations between varieties are not explained by geography or subspecies but can be significantly distinguished by grapes' color, even after excluding flavonoids and anthocyanins. In our analysis, we found that purple grape varieties had the highest levels of key bioactive components such as flavonoids, pentacyclic triterpenes, and polyphenols, which are thought to have a variety of health benefits such as antioxidant, anti-inflammatory, and antitumor properties, when compared to grapes of other colors. In addition, we found higher levels of vitamins in red and pink grapes, possibly explaining their role in preventing anemia and scurvy and protecting the skin. These findings may be a major factor in the greater health benefits of wines made from purple grapes. Our study provides comprehensive metabolic profiling data of grape berries that may contribute to future research on the French paradox.
Collapse
Affiliation(s)
- Huanteng Hou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yufei Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Shen Zhou
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Ran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Yuanyue Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Long Lei
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Chenkun Yang
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Sishu Huang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Hang Xu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Xianqing Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Min Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jie Luo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
3
|
Chen Y, Ma L, Liu Y, Huo J, Gao Y, Dong S, Li S. Study on the effect of enzymolysis combined fermentation on reducing the off-flavor of egg white powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7864-7872. [PMID: 38821888 DOI: 10.1002/jsfa.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The application of egg white powder (EWP) was subject to its off-flavor. In the present study, flavourzyme and lactic acid bacteria were used to treat egg white powder (EWP) and the mechanism effects of enzymolysis-fermentation were explored. RESULTS Compared with the control group, enzymolysis combined with fermentation treatment group (EW-EF) reduced the four-representative off-flavor compounds (geranyl acetone, 1-octen-3-ol, octanal and nonanal) by more than 62.66%. Fermentation produced esters with good flavor, and enzymolysis produced fresh amino acids. Characterization of protein structure indicated that fermentation decreased both fluorescence intensity and surface negative charges, accelerating the aggregation of proteins; enzymolysis promoted aggregation and degradation, improving the stability of the egg white proteins. Meanwhile, enzymolysis broke down the hydrophobic cavities bound to off-flavor compounds, releasing protein-bound off-flavor compounds and removing them through fermentation. CONCLUSION EW-EF had the best effect of off-flavor removal on EWP. The results of the present study could provide a green and effective method for improving the flavor of EWP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujie Chen
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lulu Ma
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Liu
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiaying Huo
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Gao
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shijian Dong
- Department of Product Research & Development, Anhui Rongda Food Co., Ltd, Guangde, China
| | - Shugang Li
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
4
|
Li X, Yan Y, Wang L, Li G, Wu Y, Zhang Y, Xu L, Wang S. Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries. PLANTS (BASEL, SWITZERLAND) 2024; 13:1862. [PMID: 38999702 PMCID: PMC11243831 DOI: 10.3390/plants13131862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Monoterpenes are a class of volatile organic compounds that play crucial roles in imparting floral and fruity aromas to Muscat-type grapes. However, our understanding of the regulatory mechanisms underpinning monoterpene biosynthesis in grapes, particularly following abscisic acid (ABA) treatment, remains elusive. This study aimed to explore the impact of exogenous ABA on monoterpene biosynthesis in Ruiduhongyu grape berries by employing Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) analysis and transcriptome sequencing. The results suggested significant differences in total soluble solids (TSS), pH, and total acid content. ABA treatment resulted in a remarkable increase in endogenous ABA levels, with concentrations declining from veraison to ripening stages. ABA treatment notably enhanced monoterpene concentrations, particularly at the E_L37 and E_L38 stages, elevating the overall floral aroma of grape berries. According to the variable gene expression patterns across four developmental stages in response to ABA treatment, the E_L37 stage had the largest number of differential expressed genes (DEGs), which was correlated with a considerable change in free monoterpenes. Furthermore, functional annotation indicated that the DEGs were significantly enriched in primary and secondary metabolic pathways, underlining the relationship between ABA, sugar accumulation, and monoterpene biosynthesis. ABA treatment upregulated key genes involved in the methylerythritol phosphate (MEP) pathway, enhancing carbon allocation and subsequently impacting terpene synthesis. This study also identified transcription factors, including MYB and AP2/ERF families, potentially modulating monoterpene and aroma-related genes. Weighted gene co-expression network analysis (WGCNA) linked ABA-induced gene expression to monoterpene accumulation, highlighting specific modules enriched with genes associated with monoterpene biosynthesis; one of these modules (darkgreen) contained genes highly correlated with most monoterpenes, emphasizing the role of ABA in enhancing grape quality during berry maturation. Together, these findings provide valuable insights into the multifaceted effects of exogenous ABA on monoterpene compounds and grape berry flavor development, offering potential applications in viticulture and enology.
Collapse
Affiliation(s)
- Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixuan Yan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanhan Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yusen Wu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Zhang
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Lurong Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Yao X, Wu Y, Lan Y, Cui Y, Shi T, Duan C, Pan Q. Effect of Cluster-Zone Leaf Removal at Different Stages on Cabernet Sauvignon and Marselan ( Vitis vinifera L.) Grape Phenolic and Volatile Profiles. PLANTS (BASEL, SWITZERLAND) 2024; 13:1543. [PMID: 38891351 PMCID: PMC11174890 DOI: 10.3390/plants13111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
This study investigated the effect of leaf removal at three stages of grape development on the phenolic and volatile profiles of Cabernet Sauvignon and Marselan grapevines for two consecutive years in the Jieshi Mountain region, an area of eastern China with high summer rainfall. The results indicated that cluster-zone leaf removal generally reduced the titratable acidity of both varieties, but did not affect the total soluble solids of grape berries. Leaf-removal treatments increased the anthocyanin and flavonol content of berries in both varieties. However, in Cabernet Sauvignon, leaf removal negatively affected the norisoprenoid compounds, with a more pronounced impact observed when the leaf removal was conducted at an early stage. This negative effect may be related to a decrease in the levels of violaxanthin and neoxanthin, potential precursors of vitisprine and β-damascenone. In contrast, the removal of leaves had no effect on the norisoprenoid aroma of Marselan grapes.
Collapse
Affiliation(s)
- Xuechen Yao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yangpeng Wu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yanzhi Cui
- Bodega Langes Co., Ltd., Qinghuangdao 066600, China; (Y.C.); (T.S.)
| | - Tonghua Shi
- Bodega Langes Co., Ltd., Qinghuangdao 066600, China; (Y.C.); (T.S.)
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| |
Collapse
|
6
|
Wang YC, Wei Y, Li XY, Zhang HM, Meng X, Duan CQ, Pan QH. Ethylene-responsive VviERF003 modulates glycosylated monoterpenoid synthesis by upregulating VviGT14 in grapes. HORTICULTURE RESEARCH 2024; 11:uhae065. [PMID: 38689696 PMCID: PMC11059816 DOI: 10.1093/hr/uhae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 05/02/2024]
Abstract
Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.
Collapse
Affiliation(s)
- Ya-Chen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiang-Yi Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Min Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
7
|
Wang H, Wang X, Yan A, Liu Z, Ren J, Xu H, Sun L. Metabolomic and transcriptomic integrated analysis revealed the decrease of monoterpenes accumulation in table grapes during long time low temperature storage. Food Res Int 2023; 174:113601. [PMID: 37986463 DOI: 10.1016/j.foodres.2023.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Low temperature is the commonly used technique for maintaining the quality of table grapes during postharvest storage. However, this technique could strongly affect the aromatic flavor of fruit. Monoterpenes are the key compounds contributing to the Muscat aromas of grapes. The detailed information and molecular mechanisms underlying the changes in monoterpenes during postharvest low temperature storage have not been thoroughly characterized. In this study, the effects of low temperature storage on the free and bound monoterpene profiles in four cultivars of table grape were determined at both the transcriptomic and metabolomic levels. A total of 27 compounds in both free and bound forms were identified in the four cultivars and showed quantitative differences between the cultivars. Hierarchical cluster and principal component analysis indicated that the free and bound monoterpene profiles were remarkably affected by the low temperature storage. The monoterpenes in the same biosynthesis pathway were clustered together and showed similar evolution trends during low temperature storage. And the content of most of free monoterpenes underwent a rapid decline during low-temperature storage at a certain stage, but the time was different in 4 grape cultivars. Transcriptomic analysis revealed that the expression of DXS, HDR, GPPS and TPS genes involved in the monoterpene synthesis pathway were consistent with the changes in the accumulation of monoterpene compounds. While the expression of HMGS, HMGR genes in MVA pathway and branch genes GGPPS and FPPS were negatively correlated with the accumulation of monoterpenes. The findings provide new insights into the underlying mechanisms of the berry aroma flavor change during low temperature storage.
Collapse
Affiliation(s)
- Huiling Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Xiaoyue Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Ailing Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China
| | - Zhenhua Liu
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, PR China
| | - Jiancheng Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China
| | - Haiying Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, PR China; Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, PR China.
| | - Lei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, PR China.
| |
Collapse
|
8
|
Li H, Fu Y, Song F, Xu X. Recent Updates on the Antimicrobial Compounds from Marine-Derived Penicillium fungi. Chem Biodivers 2023; 20:e202301278. [PMID: 37877324 DOI: 10.1002/cbdv.202301278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
In this review, 72 compounds isolated from marine-derived Penicillium fungi and their antimicrobial activities are reviewed from 2020 to 2023. According to their structures, these compounds can be divided into terpenoids, polyketides, alkaloids and other structural compounds, among which terpenoids and polyketides are relatively large in number. Some compounds have powerful inhibitory effects against different pathogenic bacteria and fungi. This review aims to provide more useful information and enlightenment for further efficient utilization of Penicillium spp. and their secondary metabolites.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Yanqi Fu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, 100083, Beijing, P. R. China
| |
Collapse
|
9
|
Guittin C, Maçna F, Barreau A, Poitou X, Sablayrolles JM, Mouret JR, Farines V. The aromatic profile of wine distillates from Ugni blanc grape musts is influenced by the nitrogen nutrition (organic vs. inorganic) of Saccharomyces cerevisiae. Food Microbiol 2023; 111:104193. [PMID: 36681397 DOI: 10.1016/j.fm.2022.104193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Although the impact of nitrogen nutrition on the production of fermentative aromas in oenological fermentation is well known today, one may wonder whether the effects studied are the same when winemaking takes place at high turbidities, specifically for the production of wines intended for cognac distillation. To that effect, a fermentation robot was used to analyze 30 different fermentation conditions at two turbidity levels with several factors tested: (i) initial addition of nitrogen either organic (with a mixture of amino acids - MixAA) or inorganic with di-ammonium phosphate (DAP) at different concentrations, (ii) variation of the ratio of inorganic/organic nitrogen (MixAA and DAP) and (iii) addition of different single amino acids (alanine, arginine, aspartic acid and glutamic acid). A metabolomic analysis was carried out on all resulting wines to have a global vision of the impact of nitrogen on more than sixty aromatic molecules of various families. Then, at the end of the alcoholic fermentation, the wines were micro-distilled. A first interesting observation was that the aroma profiles of both wines and distillates were close, indicating that the concentration factor is rather similar for the different aromas studied. Secondly, the fermentation kinetics and aroma results have shown that the nitrogen concentration effect prevailed over the nature of nitrogen. Although the lipid concentration was in excess, an interaction between the assimilable nitrogen and lipid contents was still observed in wines or in micro-distillates. Alanine is involved in the synthesis of acetaldehyde, isobutanol, isoamyl alcohol and isoamyl acetate. Finally, it was demonstrated that modifying the ratio of assimilable nitrogen in musts is not an interesting technological response to improve the aromatic profile of wines and brandies. Indeed, unbalance the physiological ratio of the must by adding a single source of assimilable nitrogen (organic or inorganic) has been shown to deregulate the synthesis of most of the fermentation aromas produced by the yeast. Wine metabolomic analysis confirmed the results that had been observed in micro-distillates but also in the other aromatic families, especially on terpenes. The contribution of solid particles, but also yeast biosynthesis (via sterol management in must) to wine terpenes is discussed. Indeed, the synthesis of terpenes in this oenological context seems to be favored, especially since the concentration of assimilable nitrogen (in addition to the lipid content) favor their accumulation in the medium. A non-negligible vintage effect on the terpene profile was also demonstrated with variations in their distribution depending on the years. Thus, the present study focuses on the metabolism of wine yeasts under different environmental conditions (nitrogen and lipid content) and on the impact of distillation on the fate of flavor compounds. The results highlight once again the complexity of metabolic fluxes and of the impact of nitrogen source (nature and amount) and of lipids. Furthermore, this study demonstrates that beyond the varietal origin of terpenes, the part resulting from the de novo synthesis by the yeast during the fermentation cannot be neglected in the context of cognac winemaking with high levels of turbidity.
Collapse
Affiliation(s)
- Charlie Guittin
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Faïza Maçna
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | | | | | | | - Jean-Roch Mouret
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Vincent Farines
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
10
|
Wei J, Yang Y, Peng Y, Wang S, Zhang J, Liu X, Liu J, Wen B, Li M. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants ( Camellia sinensis). Int J Mol Sci 2023; 24:ijms24086937. [PMID: 37108101 PMCID: PMC10138656 DOI: 10.3390/ijms24086937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.
Collapse
Affiliation(s)
- Junchi Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Yun Yang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Ye Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Shaoying Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jing Zhang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jianjun Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Beibei Wen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Meifeng Li
- College of Tea Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Vine Foliar Treatments at Veraison and Post-Veraison with Methyl Jasmonate Enhanced Aromatic, Phenolic and Nitrogen Composition of Tempranillo Blanco Grapes. Foods 2023; 12:foods12061142. [PMID: 36981069 PMCID: PMC10048190 DOI: 10.3390/foods12061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Methyl jasmonate (MeJ) is an elicitor that, when applied in the vineyard, can improve grape quality. There are several studies about the MeJ influence on red grape varieties; however, to our knowledge, there is little information about white grape varieties, specifically Tempranillo Blanco. Therefore, the aim of this work is to evaluate the effect of MeJ foliar treatments, carried out at veraison and post-veraison, on the aromatic, phenolic and nitrogen composition of Tempranillo Blanco grapes. The results showed that grape volatile compounds content increased after MeJ application, especially terpenoids, C13 norisoprenoids, benzenoids and alcohols, and, in general, mainly at post-veraison. Regarding phenolic and nitrogen compounds, their concentrations were enhanced after MeJ treatments, regardless of application time. Consequently, MeJ treatment improved grape volatile, phenolic and nitrogen composition, particularly when this elicitor was applied post-veraison. Therefore, this is a good and easy tool to modulate white grape quality.
Collapse
|
12
|
Ling M, Chai R, Xiang X, Li J, Zhou P, Shi Y, Duan C, Lan Y. Characterization of key odor-active compounds in Chinese Dornfelder wine and its regional variations by application of molecular sensory science approaches. Food Chem X 2023; 17:100598. [PMID: 36845498 PMCID: PMC9944611 DOI: 10.1016/j.fochx.2023.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
In this study, aroma characteristics and odor-active compounds in Dornfelder wines from three main production regions of China were comprehensively investigated for the first time. The leading features of Chinese Dornfelder wines were black fruit, violet, acacia/lilac, red fruit, spice, dried plum, honey, and hay based on check-all-that-apply. Wines from the Northern Foothills of Tianshan Mountains and Eastern Foothills of Helan Mountains were dominated by floral and fruity aromas, while wines from the Jiaodong Peninsula were characterized by mushroom/earth, hay, and medicinal material notes. Aroma profiles of Dornfelder wines in three regions were successfully reconstructed with 61 volatiles determined by AEDA-GC-O/MS and OAV. Through aroma reconstitution, omission tests, and descriptive analysis, terpenoids could be regarded as varietal characteristic compounds directly contributing to floral perception in Dornfelder wines. Guaiacol, eugenol, and isoeugenol were further revealed to have a synergistic effect with linalool and geraniol on violet, acacia/lilac, spice, and black fruit.
Collapse
Affiliation(s)
- Mengqi Ling
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ruixue Chai
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaofeng Xiang
- Key Laboratory of Lipid Resources Utilization and Children's Daily Chemicals, Chongqing University of Education, Chongqing, 400067, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Penghui Zhou
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China,Corresponding author at: Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China.
| |
Collapse
|
13
|
VanderWeide J, Harris C, Zandberg WF, Castellarin SD. Understanding the Sensitivity of Grape Terpenes to Jasmonates Using In Vitro Culture and In Vivo Vineyard Experiments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3141-3151. [PMID: 36602277 DOI: 10.1021/acs.jafc.2c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Terpene volatiles define the flavor of terpenic grape cultivars. However, grape terpene concentrations can vary 2- to 3-fold across seasons and vineyards, impacting vintage quality. The plant hormone methyl jasmonate (MeJA) stimulates grape terpene production but is expensive and can decrease berry weight and maturity. The synthetic jasmonate prohydrojasmon (PDJ) is cost-effective yet has not been evaluated on grape maturity and terpene production. Here, we performed in vitro (berry culture) and in vivo (vineyard) experiments using Gewürztraminer (Vitis vinifera L.) to evaluate the time- and concentration-dependent sensitivity of maturity parameters and terpene content to MeJA and PDJ. In vitro berry weight was reduced by high MeJA and PDJ concentration across timings. Terpenes were most sensitive to low MeJA concentration at veraison (increased 24-fold) in vitro. Moderate PDJ concentration applied at veraison doubled (increased twofold) terpene concentration in vivo without impacting berry weight or maturity. In conclusion, PDJ may provide a solution to mitigate seasonal variability in terpene production in terpenic grape cultivars.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| | - Chelsea Harris
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| | - Wesley F Zandberg
- Wine Research Centre, Department of Chemistry, University of British Columbia-Okanagan, 3187 University Way, Kelowna, BCV1V 1V7, Canada
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
14
|
Transcriptomic and metabolic analyses reveal differences in monoterpene profiles and the underlying molecular mechanisms in six grape varieties with different flavors. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
16
|
Impact of Inoculating with Indigenous Bacillus marcorestinctum YC-1 on Quality and Microbial Communities of Yibin Yacai (Fermented Mustard) during the Fermentation Process. Foods 2022; 11:foods11223593. [PMID: 36429185 PMCID: PMC9689668 DOI: 10.3390/foods11223593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus species play an important role in improving the quality of some fermented foods and are also one of the dominant bacteria in Yibin Yacai (fermented mustard). However, little is known about their effects on the quality of Yibin Yacai. Here, the effect of Bacillus marcorestinctum YC-1 on the quality and microbial communities of Yibin Yacai during the fermentation process was investigated. Results indicated that the inoculation of Bacillus marcorestinctum YC-1 promoted the growth of Weissella spp. and Lactobacillus spp. and inhibited the growth of pathogens, accelerating the synthesis of free amino acids and organic acids and the degradation of nitrite. Furthermore, inoculating Yibin Yacai with YC-1 could effectively enhance the synthesis of alcohols and terpenoids in yeasts, thus producing more linalool, terpinen-4-ol, and α-muurolen in Yibin Yacai, and endowing it with pleasant floral, fruity, woody, and spicy aromas. These findings reveal that the inoculation of B. marcorestinctum YC-1 can improve the quality and safety of Yibin Yacai by changing microbial communities as fermentation proceeds.
Collapse
|
17
|
Gong X, Huang J, Xu Y, Li Z, Li L, Li D, Belwal T, Jeandet P, Luo Z, Xu Y. Deterioration of plant volatile organic compounds in food: Consequence, mechanism, detection, and control. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Šikuten I, Štambuk P, Tomaz I, Marchal C, Kontić JK, Lacombe T, Maletić E, Preiner D. Discrimination of genetic and geographical groups of grape varieties ( Vitis vinifera L.) based on their volatile organic compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:942148. [PMID: 36340348 PMCID: PMC9634546 DOI: 10.3389/fpls.2022.942148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Grape volatile organic compounds (VOCs) play an important role in the winemaking industry due to their contribution to wine sensory characteristics. Another important role in the winemaking industry have the grapevine varieties used in specific regions or countries for wine production. Due to the high variability of grapevine germplasm, grapevine varieties are as classified based on their genetic and geographical origin into genetic-geographic groups (GEN-GEO). The aim of this research was to investigate VOCs in 50 red grapevine varieties belonging to different GEN-GEO groups. The study included varieties from groups C2 (Italy and France), C7 (Croatia), and C8 (Spain and Portugal). The analysis of VOCs was performed by SPME-Arrow-GC/MS directly from grape skins. The analyzed VOCs included aldehydes, ketones, acids, alcohols, monoterpenes, and sesquiterpenes. The most abundant VOCs were aldehydes and alcohols, while the most numerous were sesquiterpenes. The most abundant compounds, aldehydes and alcohols, were found to be (E)-2-hexenal, hexenal, (E)-2-hexen-1-ol, and 1-hexanol. Using discriminant analysis, the GEN-GEO groups were separated based on their volatile profile. Some of the individual compounds contributing to the discrimination were found in relatively small amounts, such as benzoic acid, (E,E)-2,4-hexadienal, 4-pentenal, and nonanoic acid. The groups were also discriminated by their overall volatile profile: group C2 was characterized by a higher content of aldehydes and alcohols, and group C8 was characterized by a higher content of sesquiterpenes and acids. Group C7 was characterized by all low amount of all classes of VOCs.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Cecile Marchal
- Grapevine Biological Resources Center, INRAE, Unité Experimental Domaine de Vassal, University of Montpellier, Marseillan, France
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Thierry Lacombe
- AGAP, University of Montpellier CIRAD, Institut Agro, Montpellier, France
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
19
|
Li M, Li X, Zhou J, Sun Y, Du J, Wang Z, Luo Y, Zhang Y, Chen Q, Wang Y, Lin Y, Zhang Y, He W, Wang X, Tang H. Genome-wide identification and analysis of terpene synthase ( TPS) genes in celery reveals their regulatory roles in terpenoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1010780. [PMID: 36247575 PMCID: PMC9557977 DOI: 10.3389/fpls.2022.1010780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 05/31/2023]
Abstract
Terpenes are an important class of secondary metabolites in celery, which determine its flavor. Terpene synthase (TPS) has been established as a key enzyme in the biosynthesis of terpenes. This study systematically analyzed all members of the TPS gene family of celery (Apium graveolens) based on whole genome data. A total of 39 celery TPS genes were identified, among which TPS-a and TPS-b represented the two largest subfamilies. 77 cis-element types were screened in the promoter regions of AgTPS genes, suggesting the functional diversity of members of this family. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that AgTPS genes were enriched in multiple terpenoid biosynthesis pathways. Transcript abundance analysis and qRT-PCR showed that most AgTPS genes were differentially expressed in different tissues and colors of celery, with AgTPS 6, 9, and 11 expressed differentially in tissues, while AgTPS31, 32, and 38 are expressed differently in colors. More than 70% of the celery volatile compounds identified by HS-SPME-GC/MS were terpene, and the most critical compounds were β-Myrcene, D-Limonene, β-Ocimene and γ-Terpinene. Principal component analysis (PCA) showed that compounds (E)-β-Ocimene, D-Limonene, β-Myrcene and γ-Terpinene predominantly accounted for the variation. Further correlation analysis between gene expression and terpenoid accumulation showed that the four genes AgTPS9, 25, 31 and 38 genes may have positive regulatory effects on the synthesis of D-Limonene and β-Myrcene in celery. Overall, this study identified key candidate genes that regulate the biosynthesis of volatile compounds and provide the foothold for the development and utilization of terpenoids in celery.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yue Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jiageng Du
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhuo Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Adaptive Laboratory Evolution of Yeasts for Aroma Compound Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aroma compounds are important in the food and beverage industry, as they contribute to the quality of fermented products. Yeasts produce several aroma compounds during fermentation. In recent decades, production of many aroma compounds by yeasts obtained through adaptive laboratory evolution has become prevalent, due to consumer demand for yeast strains in the industry. This review presents general aspects of yeast, aroma production and adaptive laboratory evolution and focuses on the recent advances of yeast strains obtained by adaptive laboratory evolution to enhance the production of aroma compounds.
Collapse
|
21
|
Río Segade S, Škrab D, Pezzuto E, Paissoni MA, Giacosa S, Rolle L. Isomer composition of aroma compounds as a promising approach for wine characterization and differentiation: A review. Crit Rev Food Sci Nutr 2022; 64:334-353. [PMID: 35930430 DOI: 10.1080/10408398.2022.2106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The perceived aroma is the result of the presence of volatile organic compounds (VOCs) as well as the interaction among them and with the nonvolatile sample matrix. These compounds can derive from grape berries (varietal) and also be formed during winemaking and aging processes. Varietal VOCs are strongly influenced by the grape variety, ripening, and geographical origin. Therefore, they were proposed as markers for wine discrimination. Nevertheless, recent studies highlighted the higher discriminating ability of VOC isomer forms. In this review the potential and importance of VOC isomers for terpenes, C13-norisoprenoids, C6-alcohols, thiols, lactones, and fatty acid esters, as well as isomeric relationships for wine characterization and differentiation have been described to get a full view of possible applications for the wine industry, highlighting potentialities and limitations. VOC isomers can be of paramount relevance to find reliable markers for wine authenticity and fraud prevention, regarding variety and geographical origin. Each isomer form owns a different olfactory threshold, influencing strongly wine sensory characteristics. Certain oenological treatments during winemaking and aging were found to modify the isomeric profile, particularly yeasts, aging, and wood in contact with wine. Nevertheless, this research field has potential and new research advances are expected in this field.
Collapse
Affiliation(s)
- Susana Río Segade
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Domen Škrab
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Enrico Pezzuto
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | | | - Simone Giacosa
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Luca Rolle
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
22
|
Abstract
Elicitors as alternatives to agrochemicals are widely used as a sustainable farming practice. The use of elicitors in viticulture to control disease and improve phenolic compounds is widely recognized in this field. Concurrently, they also affect other secondary metabolites, such as aroma compounds. Grape and wine aroma compounds are an important quality factor that reflects nutritional information and influences consumer preference. However, the effects of elicitors on aroma compounds are diverse, as different grape varieties respond differently to treatments. Among the numerous commercialized elicitors, some have proven very effective in improving the quality of grapes and the resulting wines. This review summarizes some of the elicitors commonly used in grapevines for protection against biotic and abiotic stresses and their impact on the quality of volatile compounds. The work is intended to serve as a reference for growers for the sustainable development of high-quality grapes.
Collapse
|
23
|
Wang XJ, Luo Q, Li T, Meng PH, Pu YT, Liu JX, Zhang J, Liu H, Tan GF, Xiong AS. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. HORTICULTURE RESEARCH 2022; 9:uhac076. [PMID: 38239769 PMCID: PMC10795576 DOI: 10.1093/hr/uhac076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2024]
Abstract
Many of the world's most important vegetables and medicinal crops, including carrot, celery, coriander, fennel, and cumin, belong to the Apiaceae family. In this review, we summarize the complex origins of Apiaceae and the current state of research on the family, including traditional and molecular breeding practices, bioactive compounds, medicinal applications, nanotechnology, and omics research. Numerous molecular markers, regulatory factors, and functional genes have been discovered, studied, and applied to improve vegetable and medicinal crops in Apiaceae. In addition, current trends in Apiaceae application and research are also briefly described, including mining new functional genes and metabolites using omics research, identifying new genetic variants associated with important agronomic traits by population genetics analysis and GWAS, applying genetic transformation, the CRISPR-Cas9 gene editing system, and nanotechnology. This review provides a reference for basic and applied research on Apiaceae vegetable and medicinal plants.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping-Hong Meng
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Yu-Ting Pu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Cheng GT, Li YS, Qi SM, Wang J, Zhao P, Lou QQ, Wang YF, Zhang XQ, Liang Y. SlCCD1A Enhances the Aroma Quality of Tomato Fruits by Promoting the Synthesis of Carotenoid-Derived Volatiles. Foods 2021; 10:2678. [PMID: 34828962 PMCID: PMC8621488 DOI: 10.3390/foods10112678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
The loss of volatiles results in the deterioration of flavor in tomatoes. Volatiles are mainly derived from fatty acid, carotenoid, phenylpropane, and branched chain amino acids. In this study, the tomato accession CI1005 with a strong odor and accession TI4001 with a weak odor were analyzed. The volatile contents were measured in tomato fruits using gas chromatography-mass spectrometry. The scores of tomato taste and odor characteristics were evaluated according to hedonistic taste and olfaction. It was found that the content of fatty acid-derived volatiles accounted for more than half of the total volatiles that had grassy and fatty aromas. Phenylpropane-derived volatiles had irritation and floral aromas. Branched-chain amino acid-derived volatiles had a caramel aroma. Carotenoid-derived volatiles had floral, fruity, fatty, and sweet-like aromas, preferred by consumers. A lack of carotenoid-derived volatiles affected the flavor quality of tomato fruits. The accumulation of carotenoid-derived volatiles is regulated by carotenoid cleavage oxygenases (CCDs). A tissue-specific expression analysis of the SlCCD genes revealed that the expression levels of SlCCD1A and SlCCD1B were higher in tomato fruits than in other tissues. The expression levels of SlCCD1A and SlCCD1B were consistent with the trend of the carotenoid-derived volatile contents. The expression of SlCCD1A was higher than that for SlCCD1B. A bioinformatics analysis revealed that SlCCD1A was more closely linked to carotenoid metabolism than SlCCD1B. The overexpression of SlCCD1A indicated that it could cleave lycopene, α-carotene, and β-carotene to produce 6-methyl-5-hepten-2-one, geranylacetone, α-ionone, and β-ionone, increasing the floral, fruity, fatty, and sweet-like aromas of tomato fruits. The flavor quality of tomato fruits could be improved by overexpressing SlCCD1A.
Collapse
Affiliation(s)
- Guo-Ting Cheng
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (G.-T.C.); (Y.-S.L.); (S.-M.Q.); (J.W.); (P.Z.); (Q.-Q.L.)
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Xianyang 712100, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China; (Y.-F.W.); (X.-Q.Z.)
- College of Life Science, Yan’an University, Yan’an 716000, China
| | - Yu-Shun Li
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (G.-T.C.); (Y.-S.L.); (S.-M.Q.); (J.W.); (P.Z.); (Q.-Q.L.)
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Xianyang 712100, China
| | - Shi-Ming Qi
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (G.-T.C.); (Y.-S.L.); (S.-M.Q.); (J.W.); (P.Z.); (Q.-Q.L.)
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Xianyang 712100, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (G.-T.C.); (Y.-S.L.); (S.-M.Q.); (J.W.); (P.Z.); (Q.-Q.L.)
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Xianyang 712100, China
| | - Pan Zhao
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (G.-T.C.); (Y.-S.L.); (S.-M.Q.); (J.W.); (P.Z.); (Q.-Q.L.)
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Xianyang 712100, China
| | - Qian-Qi Lou
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (G.-T.C.); (Y.-S.L.); (S.-M.Q.); (J.W.); (P.Z.); (Q.-Q.L.)
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Xianyang 712100, China
| | - Yan-Feng Wang
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China; (Y.-F.W.); (X.-Q.Z.)
- College of Life Science, Yan’an University, Yan’an 716000, China
| | - Xiang-Qian Zhang
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China; (Y.-F.W.); (X.-Q.Z.)
- College of Life Science, Yan’an University, Yan’an 716000, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (G.-T.C.); (Y.-S.L.); (S.-M.Q.); (J.W.); (P.Z.); (Q.-Q.L.)
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
25
|
Li X, Ren JN, Fan G, Zhang LL, Pan SY. Advances on (+)-nootkatone microbial biosynthesis and its related enzymes. J Ind Microbiol Biotechnol 2021; 48:kuab046. [PMID: 34279658 PMCID: PMC8788795 DOI: 10.1093/jimb/kuab046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
(+)-Nootkatone is an important functional sesquiterpene and is comprehensively used in pharmaceutical, cosmetic, agricultural and food flavor industries. However, (+)-nootkatone is accumulated trace amounts in plants, and the demand for industry is mainly met by chemical methods which is harmful to the environment. The oxygen-containing sesquiterpenes prepared using microbial methods can be considered as "natural." Microbial transformation has the advantages of mild reaction conditions, high efficiency, environmental protection, and strong stereoselectivity, and has become an important method for the production of natural spices. The microbial biosynthesis of (+)-nootkatone from the main precursor (+)-valencene is summarized in this paper. Whole-cell systems of fungi, bacteria, microalgae, and plant cells have been employed. It was described that the enzymes involved in the microbial biosynthesis of (+)-nootkatone, including cytochrome p450 enzymes, laccase, lipoxygenase, and so on. More recently, the related enzymes were expressed in microbial hosts to heterologous produce (+)-nootkatone, such as Escherichia coli, Pichia pastoris, Yarrowia lipolytica, and Saccharomyces cerevisiae. Finally, the development direction of research for realizing industrialization of microbial transformation was summarized and it provided many options for future improved bioprocesses.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
26
|
Santin M, Ranieri A, Castagna A. Anything New under the Sun? An Update on Modulation of Bioactive Compounds by Different Wavelengths in Agricultural Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1485. [PMID: 34371687 PMCID: PMC8309429 DOI: 10.3390/plants10071485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022]
Abstract
Plants continuously rely on light as an energy source and as the driver of many processes in their lifetimes. The ability to perceive different light radiations involves several photoreceptors, which in turn activate complex signalling cascades that ultimately lead to a rearrangement in plant metabolism as an adaptation strategy towards specific light conditions. This review, after a brief summary of the structure and mode of action of the different photoreceptors, introduces the main classes of secondary metabolites and specifically focuses on the influence played by the different wavelengths on the content of these compounds in agricultural plants, because of their recognised roles as nutraceuticals.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| |
Collapse
|
27
|
Cassago ALL, Artêncio MM, de Moura Engracia Giraldi J, Da Costa FB. Metabolomics as a marketing tool for geographical indication products: a literature review. Eur Food Res Technol 2021; 247:2143-2159. [PMID: 34149310 PMCID: PMC8204615 DOI: 10.1007/s00217-021-03782-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Geographical indication (GI) is used to identify a product's origin when its characteristics or quality are a result of geographical origin, which includes agricultural products and foodstuff. Metabolomics is an “omics” technique that can support product authentication by providing a chemical fingerprint of a biological system, such as plant and plant-derived products. The main purpose of this article is to verify possible contributions of metabolomic studies to the marketing field, mainly for certified regions, through an integrative review of the literature and maps produced by VOSviewer software. The results indicate that studies based on metabolomics approaches can relate specific food attributes to the region’s terroir and know-how. The evidence of this connection, marketing of GIs and metabolomics methods, is viewed as potential tool for marketing purposes (e.g., to assist communication of positive aspects and quality), and legal protection. In addition, our results provide a taxonomic categorization that can guide future marketing research involving metabolomics. Moreover, the results are also useful to government agencies to improve GIs registration systems and promotion strategies.
Collapse
Affiliation(s)
- Alvaro Luis Lamas Cassago
- Department of Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| | - Mateus Manfrin Artêncio
- Department of Business Administration, University of São Paulo, School of Economics, Business Administration and Accounting of Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-905 Brazil
| | - Janaina de Moura Engracia Giraldi
- Department of Business Administration, University of São Paulo, School of Economics, Business Administration and Accounting of Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-905 Brazil
| | - Fernando Batista Da Costa
- Department of Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
28
|
Könen PP, Stötzel I, Schwab W, Wüst M. Qualitative profiling of mono- and sesquiterpenols in aglycon libraries from Vitis vinifera L. Gewürztraminer using multidimensional gas chromatography–mass spectrometry. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03692-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractIn grape berries (Vitis vinifera L.), sesquiterpenes are mainly accumulated as hydrocarbons in the epicuticular wax layer of grapes, whereas monoterpenes, which are predominantly present as alcohols, are glycosylated and are stored as glycosides in the vacuoles of grape berry cells. In this study, extensive analysis of grape berry hydrolysates by means of comprehensive two-dimensional gas chromatography–time-of-flight–mass spectrometry demonstrated that glycosylated sesquiterpene alcohols show very little structural diversity when compared to the sesquiterpene hydrocarbon fraction in the cuticle and are glycosylated to a rather low extent when compared to monoterpenols. Twenty-four enzymatically released terpenols were found in hydrolysates of the aromatic white wine variety Gewürztraminer (V. vinifera subsp. vinifera) after previous solid-phase extraction and headspace solid-phase microextraction. The detection of only three sesquiterpene alcohols, namely farnesol, nerolidol and drimenol, shows that most sesquiterpene hydrocarbons do not have a related hydroxylated structure in grapes. Nevertheless, the presence of the acyclic aglycone farnesol and nerolidol may be of importance for the wine aroma, since these structural isomers can be converted into numerous sesquiterpenes by nonenzymatic acid-catalyzed reactions during wine production. Grape-derived glycosidically bound sesquiterpene alcohols, therefore, represent, in addition to free sesquiterpene hydrocarbons, another pool of compounds that may influence the aroma profile of wines.
Collapse
|
29
|
Consumer Preference, Quality, and Safety of Organic and Conventional Fresh Fruits, Vegetables, and Cereals. Foods 2021; 10:foods10010105. [PMID: 33419085 PMCID: PMC7825453 DOI: 10.3390/foods10010105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Growing and purchasing demand for organic fresh produce is increasing rapidly. Consumers are aware of health, environmental safety, pesticide harmfulness, nutrients, bioactive compounds, and safe food. Many research works are available on organic and conventional fresh produce. As organic fresh produce growing and purchasing demand is increasing, it has become necessary to review the recent trends in quality, safety, and consumer preferences of organic and conventional fresh food products. A few reports have been compiled on organic and conventional fresh produce. Researchers have started working on organic and conventional fresh produce with the help of modern technology to improve nutritional and functional quality, safety, and consumer preferences. Nutritional and functional quality, safety, and consumer preferences depend on cultivation techniques, treatment, crop cultivar, and appearance of products. Therefore, it is necessary to compile the literature on organic and conventional fresh produce based on quality, safety, and consumer preferences.
Collapse
|