1
|
Tsimihodimos V, Psoma O. Extra Virgin Olive Oil and Metabolic Diseases. Int J Mol Sci 2024; 25:8117. [PMID: 39125686 PMCID: PMC11312192 DOI: 10.3390/ijms25158117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Over the last few decades, metabolic syndrome coexisting with cardiovascular disease has evolved into a pandemic, making the need for more food-oriented therapeutic approaches and a redefinition of lifestyle imperative, with the Mediterranean diet being the linchpin of this effort. Extra virgin olive oil (EVOO), the key pillar of the Mediterranean diet and one of the most notorious edible oils worldwide, owes its popularity not only to its characteristic aromas and taste but mainly to a series of beneficial health attributes including anti-diabetic, hypolipidemic, anti-hypertensive and anti-obesity actions. In this narrative review, we aimed to illustrate and enlighten EVOO's metabolic properties through a pathogenetic approach, investigating its potential role in metabolic and cardiovascular health.
Collapse
|
2
|
Seidita A, Cusimano A, Giuliano A, Meli M, Carroccio A, Soresi M, Giannitrapani L. Oxidative Stress as a Target for Non-Pharmacological Intervention in MAFLD: Could There Be a Role for EVOO? Antioxidants (Basel) 2024; 13:731. [PMID: 38929170 PMCID: PMC11201095 DOI: 10.3390/antiox13060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress plays a central role in most chronic liver diseases and, in particular, in metabolic dysfunction-associated fatty liver disease (MAFLD), the new definition of an old condition known as non-alcoholic fatty liver disease (NAFLD). The mechanisms leading to hepatocellular fat accumulation in genetically predisposed individuals who adopt a sedentary lifestyle and consume an obesogenic diet progress through mitochondrial and endoplasmic reticulum dysfunction, which amplifies reactive oxygen species (ROS) production, lipid peroxidation, malondialdehyde (MDA) formation, and influence the release of chronic inflammation and liver damage biomarkers, such as pro-inflammatory cytokines. This close pathogenetic link has been a key stimulus in the search for therapeutic approaches targeting oxidative stress to treat steatosis, and a number of clinical trials have been conducted to date on subjects with NAFLD using drugs as well as supplements or nutraceutical products. Vitamin E, Vitamin D, and Silybin are the most studied substances, but several non-pharmacological approaches have also been explored, especially lifestyle and diet modifications. Among the dietary approaches, the Mediterranean Diet (MD) seems to be the most reliable for affecting liver steatosis, probably with the added value of the presence of extra virgin olive oil (EVOO), a healthy food with a high content of monounsaturated fatty acids, especially oleic acid, and variable concentrations of phenols (oleocanthal) and phenolic alcohols, such as hydroxytyrosol (HT) and tyrosol (Tyr). In this review, we focus on non-pharmacological interventions in MAFLD treatment that target oxidative stress and, in particular, on the role of EVOO as one of the main antioxidant components of the MD.
Collapse
Affiliation(s)
- Aurelio Seidita
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
| | - Alessandra Giuliano
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maria Meli
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Antonio Carroccio
- Unit of Internal Medicine, “V. Cervello” Hospital, Ospedali Riuniti “Villa Sofia-Cervello”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90146 Palermo, Italy; (A.S.); (A.G.); (M.M.); (A.C.)
| | - Maurizio Soresi
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy;
- Unit of Internal Medicine, University Hospital “P. Giaccone”, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
3
|
Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-Obesity Drug Delivery Systems: Recent Progress and Challenges. Pharmaceutics 2023; 15:2635. [PMID: 38004612 PMCID: PMC10674714 DOI: 10.3390/pharmaceutics15112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.
Collapse
Affiliation(s)
- Mohamed M. Ashour
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. Aboelnasr
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Khairy M. Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK
| |
Collapse
|
4
|
Flynn MM, Tierney A, Itsiopoulos C. Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review. Nutrients 2023; 15:2916. [PMID: 37447242 DOI: 10.3390/nu15132916] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Most chronic diseases are preventable with a healthy diet, although there is debate about the optimal dietary approach. Increasingly more countries are focusing on food-based guidelines rather than the traditional nutrient-based approach. Although there is good agreement on plant foods, controversy remains about the types and amounts of fats and oils. This narrative review aims to systematically summarize and evaluate the latest evidence on the protective effects of extra virgin olive oil (EVOO) on disease risk factors. A systematic search of the relevant literature using PubMed, Cochrane Library, and Embase databases was conducted for the years 2000 through December 2022. A narrative synthesis was then undertaken. Of 281 retrieved articles, 34 articles fulfilled our inclusion criteria and were included. Compared with other dietary fats and low-fat diets, EVOO is superior in the management of clinical biomarkers including lowering blood pressure and LDL-c, increasing protective HDL-c, improving glycemic control, and weight management. The protective effects of EVOO are likely due to its polyphenol content rather than the monounsaturated fat content. It is therefore important to promote the regular use of EVOO in the context of healthy dietary patterns such as the Mediterranean diet for maximal health benefit.
Collapse
Affiliation(s)
- Mary M Flynn
- Department of Medicine, The Miriam Hospital, Brown University, 164 Summit Ave., Providence, RI 02912, USA
| | - Audrey Tierney
- Health Implementation Science and Technology Research Group, Human Nutrition and Dietetics School of Allied Health, Health Research Institute, University of Limerick, Castletroy, V94 T9PX Limerick, Ireland
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
5
|
Ziqubu K, Mazibuko-Mbeje SE, Mthembu SXH, Mabhida SE, Jack BU, Nyambuya TM, Nkambule BB, Basson AK, Tiano L, Dludla PV. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target. Int J Mol Sci 2023; 24:2227. [PMID: 36768561 PMCID: PMC9917329 DOI: 10.3390/ijms24032227] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Brown adipose tissue (BAT) is increasingly recognized as the major therapeutic target to promote energy expenditure and ameliorate diverse metabolic complications. There is a general interest in understanding the pleiotropic effects of metformin against metabolic complications. Major electronic databases and search engines such as PubMed/MEDLINE, Google Scholar, and the Cochrane library were used to retrieve and critically discuss evidence reporting on the impact of metformin on regulating BAT thermogenic activity to ameliorate complications linked with obesity. The summarized evidence suggests that metformin can reduce body weight, enhance insulin sensitivity, and improve glucose metabolism by promoting BAT thermogenic activity in preclinical models of obesity. Notably, this anti-diabetic agent can affect the expression of major thermogenic transcriptional factors such as uncoupling protein 1 (UCP1), nuclear respiratory factor 1 (NRF1), and peroxisome-proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) to improve BAT mitochondrial function and promote energy expenditure. Interestingly, vital molecular markers involved in glucose metabolism and energy regulation such as AMP-activated protein kinase (AMPK) and fibroblast growth factor 21 (FGF21) are similarly upregulated by metformin treatment in preclinical models of obesity. The current review also discusses the clinical relevance of BAT and thermogenesis as therapeutic targets. This review explored critical components including effective dosage and appropriate intervention period, consistent with the beneficial effects of metformin against obesity-associated complications.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Sinenhlanhla X. H. Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| |
Collapse
|
6
|
Li Z, Fang X, Yu D. Transdermal Drug Delivery Systems and Their Use in Obesity Treatment. Int J Mol Sci 2021; 22:12754. [PMID: 34884558 PMCID: PMC8657870 DOI: 10.3390/ijms222312754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transdermal drug delivery (TDD) has recently emerged as an effective alternative to oral and injection administration because of its less invasiveness, low rejection rate, and excellent ease of administration. TDD has made an important contribution to medical practice such as diabetes, hemorrhoids, arthritis, migraine, and schizophrenia treatment, but has yet to fully achieve its potential in the treatment of obesity. Obesity has reached epidemic proportions globally and posed a significant threat to human health. Various approaches, including oral and injection administration have widely been used in clinical setting for obesity treatment. However, these traditional options remain ineffective and inconvenient, and carry risks of adverse effects. Therefore, alternative and advanced drug delivery strategies with higher efficacy and less toxicity such as TDD are urgently required for obesity treatment. This review summarizes current TDD technology, and the main anti-obesity drug delivery system. This review also provides insights into various anti-obesity drugs under study with a focus on the recent developments of TDD system for enhanced anti-obesity drug delivery. Although most of presented studies stay in animal stage, the application of TDD in anti-obesity drugs would have a significant impact on bringing safe and effective therapies to obese patients in the future.
Collapse
Affiliation(s)
| | | | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Z.L.); (X.F.)
| |
Collapse
|
7
|
Wang Z, Zeng M, Wang Z, Qin F, Wang Y, Chen J, Christian M, He Z. Food phenolics stimulate adipocyte browning via regulating gut microecology. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34738509 DOI: 10.1080/10408398.2021.1997905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fat browning has piqued the interest of researchers as a potential target for treating obesity and related metabolic disorders. Recruitment of brown adipocytes leads to enhanced energy dissipation and reduced adiposity, thus facilitating the maintenance of metabolic homeostasis. Evidence is increasing to support the crucial roles of polyphenols and gut microecology in turning fat "brown". However, it is not clear whether the intestinal microecology is involved in polyphenol-mediated regulation of adipose browning, so this concept is worthy of exploration. In this review, we summarize the current knowledge, mostly from studies with murine models, supporting the concept that the effects of food phenolics on brown fat activation and white fat browning can be attributed to their regulatory actions on gut microecology, including microbial community profile, gut metabolites, and gut-derived hormones. Furthermore, the potential underlying pathways involved are also discussed. Basically, understanding gut microecology paves the way to determine the underlying roles and mechanisms of food phenolics in adipose browning.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yongzhi Wang
- Food and Beverage Department of Damin Food (Zhangzhou) Co., Ltd, Zhangzhou, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Abstract
Virgin olive oil (VOO) has unique chemical characteristics among all other vegetable oils which are of paramount importance for human health. VOO constituents are also responsible of its peculiar flavor, a complex sensation due to a combination of aroma, taste, texture, and mouthfeel or trigeminal sensations. VOO flavor depends primarily on the concentration and nature of volatile and phenolic compounds present in olive oil which can change dramatically depending on agronomical and technological factors. Another aspect that can change the flavor perception is linked to the oral process during olive oil tasting. In fact, in this case, some human physiological and matrix effects modulate the flavor release in the mouth. The present review aims to give an overview on VOO flavor, with particular emphasis on the mechanisms affecting its production and release during a tasting.
Collapse
|
9
|
Monfort-Pires M, U-Din M, Nogueira GA, de Almeida-Faria J, Sidarta-Oliveira D, Sant'Ana MR, De Lima-Júnior JC, Cintra DE, de Souza HP, Ferreira SRG, Sapienza MT, Virtanen KA, Velloso LA. Short Dietary Intervention with Olive Oil Increases Brown Adipose Tissue Activity in Lean but not Overweight Subjects. J Clin Endocrinol Metab 2021; 106:472-484. [PMID: 33180910 DOI: 10.1210/clinem/dgaa824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The brown adipose tissue (BAT) is a potential target for the treatment of obesity and metabolic disorders. Its activation by cold exposure or adrenergic drugs can increase systemic insulin sensitivity and improve lipid metabolism; however, little is known about the effects of specific dietary components on BAT activity. OBJECTIVES We asked if a short-term (4 weeks) dietary intervention with olive oil could modify BAT activity in lean and overweight/obese volunteers. DESIGN This was a 4-week open clinical trial in which all participants underwent a dietary intervention with extra-virgin olive oil supplementation. As the initial intake of olive oil was controlled all the participants were controls of themselves. RESULTS The intervention resulted in significant increase in blood monounsaturated fatty acid levels, which was accompanied by increased BAT activity in lean but not in overweight/obese volunteers. In the lean group, an increase in leptin was detected after the intervention, and low leptin values at the beginning of the study were predictive of greater BAT activity after intervention. In addition, increase in leptin concentration was associated with increased BAT activity. Three known endogenous mediators of BAT activity, secretin, fibroblast growth factor 21 (FGF21), and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) were increased by intervention in lean, whereas only secretin and FGF21 were increased in subjects with excessive weight. CONCLUSION This study provides clinical evidence for the impact of monounsaturated fatty acids on BAT activity and an advance in the understanding of the beneficial health effects of olive oil.
Collapse
Affiliation(s)
- Milena Monfort-Pires
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Guilherme A Nogueira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliana de Almeida-Faria
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, Limeira, São Paulo, Brazil
| | - José C De Lima-Júnior
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, Limeira, São Paulo, Brazil
| | | | - Sandra R G Ferreira
- Department of Epidemiology, School of Public Health - University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Tatit Sapienza
- Division of Nuclear Medicine, Department of Radiology and Oncology, Medical School of University of São Paulo (FMUSP), São Paulo, Brazil
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|