1
|
Li J, Kudereti T, Wusiman A, Abula S, He X, Li J, Yang Y, Guo Q, Guo Q. Regulatory Effects of Alhagi Honey Small-Molecule Sugars on Growth Performance and Intestinal Microbiota of Lambs. Animals (Basel) 2024; 14:2402. [PMID: 39199936 PMCID: PMC11350646 DOI: 10.3390/ani14162402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
The present study was designed to assess the impact of Alhagi honey small-molecule sugars (AHAS) on Hu lambs. Therefore, in this study, AHAS low-dose (AHAS-L, 200 mg/ kg per day), AHAS medium-dose (AHAS-M, 400 mg/kg per day), and AHAS high-dose (AHAS-H, 800 mg/kg per day) were administered to Hu lambs to investigate the regulatory effects of AHAS on growth performance, oxidation index, immune system enhancement, and intestinal microbiota. The results showed that lambs in the AHAS-H group exhibited significantly increased in average daily weight gain, and growth performance compared to those in the control group (p < 0.05). Moreover, AHAS-H supplementation resulted in increased levels of serum antioxidant enzymes (SOD, GSH-Px, and T-AOC), serum antibodies (IgA, IgG, and IgM), and cytokines (IL-4, 10,17, IFN-γ, and TNF-α) compared with the control group (p < 0.05). Additionally, it increased the quantity and richness of beneficial bacteria at such as Sphingomonas, Ralstonia, and Flavobacterium, activating various metabolic pathways and promoting the production of various short-chain fatty acids. In summary, our findings highlight the potential of AHAS-H treatment in enhancing intestinal health of lambs by improving intestinal function, immunity, and related metabolic pathways. Consequently, these results suggest that AHAS holds promising potential as a valuable intervention for optimizing growth performance and intestinal health in lambs.
Collapse
Affiliation(s)
- Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Tuerhong Kudereti
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xiaodong He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Jiaxin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yang Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qianru Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (T.K.); (A.W.); (S.A.); (X.H.); (J.L.); (Y.Y.); (Q.G.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
2
|
Zhou Y, He G, Jiang H, Pan K, Liu W. Nanoplastics induces oxidative stress and triggers lysosome-associated immune-defensive cell death in the earthworm Eisenia fetida. ENVIRONMENT INTERNATIONAL 2023; 174:107899. [PMID: 37054650 DOI: 10.1016/j.envint.2023.107899] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Nanoplastics (NPs) are increasingly perceived as an emerging threat to terrestrial environments, but the adverse impacts of NPs on soil fauna and the mechanisms behind these negative outcomes remain elusive. Here, a risk assessment of NPs was conducted on model organism (earthworm) from tissue to cell. Using palladium-doped polystyrene NPs, we quantitatively measured nanoplastic accumulation in earthworm and investigated its toxic effects by combining physiological assessment with RNA-Seq transcriptomic analyses. After a 42-day exposure, earthworm accumulated up to 15.9 and 143.3 mg kg-1 of NPs for the low (0.3 mg kg-1) and high (3 mg kg-1) dose groups, respectively. NPs retention led to the decrease of antioxidant enzyme activity and the accumulation of reactive oxygen species (O2- and H2O2), which reduced growth rate by 21.3 %-50.8 % and caused pathological abnormalities. These adverse effects were enhanced by the positively charged NPs. Furthermore, we observed that irrespective of surface charge, after 2 h of exposure, NPs were gradually internalized by earthworm coelomocytes (∼0.12 μg per cell) and mainly amassed at lysosomes. Those agglomerations stimulated lysosomal membranes to lose stability and even rupture, resulting in impeded autophagy process and cellular clearance, and eventually coelomocyte death. In comparison with negatively charged nanoplastics, the positively charged NPs exerted 83 % higher cytotoxicity. Our findings provide a better understanding of how NPs posed harmful effects on soil fauna and have important implications for evaluating the ecological risk of NPs.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang He
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Jiang
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, China.
| |
Collapse
|
3
|
Advances and challenges in interaction between heteroglycans and Bifidobacterium: Utilization strategies, intestinal health and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
4
|
Wang K, Cai M, Sun S, Cheng W, Zhai D, Ni Z, Yu C. Therapeutic Prospects of Polysaccharides for Ovarian Cancer. Front Nutr 2022; 9:879111. [PMID: 35464007 PMCID: PMC9021481 DOI: 10.3389/fnut.2022.879111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer (OC) is ranked as the leading cause of death among cancers of the female reproductive tract. First-line platinum treatment faces the severe challenges associated with the patient relapse and poor prognosis. Thus, it is imperative to develop natural antitumor drugs for OC with high efficacy. Natural polysaccharides have significant biological activities and antitumor effects. Our work has demonstrated that polysaccharides play key roles by inhibiting the cell proliferation and growth, regulating the tumor cell cycle, inducing apoptosis, suppressing the tumor cell migration and invasion, improving the immunomodulatory activities, and enhancing the efficacy of chemotherapy (cisplatin) in OC, which provide powerful evidence for the application of polysaccharides as novel anticancer agents, supplementary remedies, and adjunct therapeutic agents alone or in combination with cisplatin for preventing and treating the OC.
Collapse
|
5
|
Li F, Wang X, Wu M, Guan J, Liang Y, Liu X, Lin X, Liu J. Biosynthetic cell membrane vesicles to enhance TRAIL-mediated apoptosis driven by photo-triggered oxidative stress. Biomater Sci 2022; 10:3547-3558. [PMID: 35616096 DOI: 10.1039/d2bm00599a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the tumor-specificity and limited side effects, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows great potential in cancer treatments. However, the short half-life of TRAIL protein and the poor...
Collapse
Affiliation(s)
- Feida Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xiaoyan Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yuzhi Liang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, P. R. China
| |
Collapse
|