1
|
Chen P, Wang Y, Cai Z, Lu X. Enhanced bioaccessibility of cyclolinopeptides via zein-cyclodextrin nanoparticles: Simulated gastrointestinal digestion and cellular uptake study. Food Chem 2025; 471:142841. [PMID: 39808983 DOI: 10.1016/j.foodchem.2025.142841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Cyclolinopeptides (CLS) are hydrophobic cyclic peptides in flaxseed with multiple bioactive activities. This study developed zein (Z)-cyclodextrin (CD) binary nanoparticles (NPs) as an oral delivery system for CLS. Z-CD NP had a smaller diameter (Dh) and better encapsulation effect on CLS. Formation of CLS-loaded NPs was driven by hydrogen bonds and electrostatic interactions. Presence of CD improved the thermal, pH and storage stabilities of NPs. Besides, CD prevented premature release of CLS in the stomach and enhanced the bioaccessibility of CLS to a maximum of 86.71 % ± 2.20 %. Lipid-raft-mediated endocytosis was involved in the cell uptake of NPs, where the addition of CD significantly facilitated the uptake of NPs. Z-CD NPs also enhanced absorption and reduced secretion of CLS after digestion. Overall, this study provides a simple approach to enhance the oral delivery efficiency of CLS by modulating Z-based NPs with CD.
Collapse
Affiliation(s)
- Peifang Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
2
|
Huang S, Li Y, Sun S, Liu TC, Xiao Q, Zhang Y. Prolamin and prolamin-polysaccharide composite nanoparticles for oral drug and nutrient delivery systems: A review. Int J Biol Macromol 2024; 283:137567. [PMID: 39549796 DOI: 10.1016/j.ijbiomac.2024.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Prolamin-based nanoparticles, particularly those composed of prolamin-polysaccharide composites, have garnered significant interest as oral delivery systems in recent research. This review provides a thorough analysis of the current advancements in these composite nanoparticles with prolamins derived from various cereals, including maize, wheat, sorghum, and millet, with a focus on their applications in oral drug delivery. It discusses the mechanisms by which these composites enhance nanoparticle performance, especially in terms of stability. The review also explores the differences among various prolamins and clarifies the reasons for their performance characteristics as encapsulants for nanoparticles. Additionally, it offers an in-depth examination of various preparation methods for these composite nanoparticles, such as the traditional anti-solvent method, pH-driven method, and several innovative techniques. The study highlights the physicochemical and encapsulation properties of these composite nanoparticles and underscores their novel applications, which hold promise for future use in the food and pharmaceutical sectors. The findings aim to support the integration of prolamin-polysaccharide composites into these industries, ultimately accelerating the development of new applications for these nanoparticles.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqian Sun
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Tristan C Liu
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
3
|
Chen X, Xiong J, Li HJ. A Review on the Driving Forces in the Formation of Bioactive Molecules-Loaded Prolamin-Based Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19549-19565. [PMID: 39186464 DOI: 10.1021/acs.jafc.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Prolamin-based particles loaded with bioactive molecules have attracted widespread attention from scientists due to their novel properties in chemistry, physics, and biology. In the self-assembly process of biopolymer-based nanocapsules, noncovalent interactions are the main driving forces for reducing bulk materials to the nanoscale and controlling the release of bioactive molecules. This article reviews the types of interaction forces, binding strength, binding active sites, molecular orientation, and binding affinity that affect the release profile of bioactive molecules during the preparation of protein stabilizer particles. Different preparation formulations, the use of different biopolymers, the inherent nature of the loaded bioactive molecules, and external factors (including pH, biopolymer concentration, temperature, salt, ultrasonication, and atmospheric cold plasma treatment) lead to different types and strengths of intra- and intermolecular interactions. Strategies, such as pH, ultrasonication, and atmospheric cold plasma, to change the protein conformation are key to improving the binding strength between proteins and bioactive substances or stabilizers. This review provides some guidance for scientists and technicians dedicated to improving loading efficiency, delaying release, enhancing colloidal stability, and exploring the binding behavior among proteins, stabilizers, and bioactive molecules.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Jia Xiong
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081, United States
| | - Hui-Jing Li
- Weihai Marine Organism and Medical Technology Research Institute, School of Chemistry and Chemical Engineering,, Harbin Institute of Technology, Harbin 150006, PR China
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Ding R, Zhang K, Guo H, Lin Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310838. [PMID: 38214694 DOI: 10.1002/smll.202310838] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
5
|
Nanda A, Pandey P, Rajinikanth PS, Singh N. Revolution of nanotechnology in food packaging: Harnessing electrospun zein nanofibers for improved preservation - A review. Int J Biol Macromol 2024; 260:129416. [PMID: 38224810 DOI: 10.1016/j.ijbiomac.2024.129416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Zein, a protein-based biopolymer derived from corn, has garnered attention as a promising and eco-friendly choice for packaging food due to its favorable physical attributes. The introduction of electrospinning technology has significantly advanced the production of zein-based nanomaterials. This cutting-edge technique enables the creation of nanofibers with customizable structures, offering high surface area and adjustable mechanical and thermal attributes. Moreover, the electrospinning process allows for integrating various additives, such as antioxidants, antimicrobial agents, and flavoring compounds, into the zein nanofibers, enhancing their functionalities for food preservation. In this comprehensive review, the various electrospinning techniques employed for crafting zein-based nanofibers, and we delve into their enhanced properties. Furthermore, the review illuminates the potential applications of zein nanofibers in active and intelligent packaging materials by incorporating diverse constituents. Altogether, this review highlights the considerable prospects of zein-based nanocomposites in the realm of food packaging, offering sustainable and innovative solutions for food industry.
Collapse
Affiliation(s)
- Alka Nanda
- Department of Food and Nutrition, School of Home Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India; Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, Kuala Lumpur, Malaysia.
| | - Neetu Singh
- Department of Food and Nutrition, School of Home Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
6
|
Wang Y, Guo J, Luo Z, Shen Y, Wang J, Yu Y, Zhao Y. Biopolymer-Assembled Porous Hydrogel Microfibers from Microfluidic Spinning for Wound Healing. Adv Healthc Mater 2024; 13:e2302170. [PMID: 37921989 DOI: 10.1002/adhm.202302170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/26/2023] [Indexed: 11/05/2023]
Abstract
Hydrogels are considered as a promising medical patch for wound healing. Researches in this aspect are focused on improving their compositions and permeability to enhance the effectiveness of wound healing. Here, novel prolamins-assembled porous hydrogel microfibers with the desired merits for treating diabetes wounds are presented. Such microfibers are continuously generated by one-step microfluidic spinning technology with acetic acid solution of prolamins as the continuous phase and deionized water as the dispersed phase. By adjusting the prolamin concentration and flow rates of microfluidics, the porous structure and morphology as well as diameters of microfibers can be well tailored. Owing to their porosity, the resultant microfibers can be employed as flexible delivery systems for wound healing actives, such as bacitracin and vascular endothelial growth factor (VEGF). It is demonstrated that the resultant hydrogel microfibers are with good cell-affinity and effective drug release efficiency, and their woven patches display superior in vivo capability in treating diabetes wounds. Thus, it is believed that the proposed prolamins-assembled porous hydrogel microfibers will show important values in clinic wound treatments.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision, and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jiahui Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yingbo Shen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision, and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision, and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
7
|
Xing J, Li Z, Zhang W, Wang P. The Composition, Structure, and Functionalities of Prolamins from Highland Barley. Molecules 2023; 28:5334. [PMID: 37513208 PMCID: PMC10385269 DOI: 10.3390/molecules28145334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The composition, structure, and functionalities of prolamins from highland barley were investigated. These parameters were compared with those of the commonly applied prolamins (zein). There are more charged and hydrophilic amino acids in highland barely prolamins than zein. The molecular weight of highland barely prolamins was between 30 and 63 kDa, which was larger than that of zein (20 and 24 kDa). The main secondary structure of highland barely prolamins was β-turn helices, while α-helical structures were the main secondary structure in zein. The water holding capacity, thermal stability, emulsifying capacity, and stability of prolamins from highland barley were significantly higher than in zein, while the opposite results were observed for oil absorption capacity between the two. The diameter of fibers prepared using highland barely prolamins was almost six times that of zein, while highland barely prolamins formed ribbon structures instead of fibers. Therefore, the results provide guidance for applications of prolamins from highland barley.
Collapse
Affiliation(s)
- Jinjin Xing
- Institute of Food Science and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850030, China
| | - Zhaomin Li
- Institute of Food Science and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850030, China
| | - Wenhui Zhang
- Institute of Food Science and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850030, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Abdullah, Ahmad N, Tian W, Zengliu S, Zou Y, Farooq S, Huang Q, Xiao J. Recent advances in the extraction, chemical composition, therapeutic potential, and delivery of cardamom phytochemicals. Front Nutr 2022; 9:1024820. [PMID: 36245491 PMCID: PMC9562589 DOI: 10.3389/fnut.2022.1024820] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary phytochemicals including plant-derived alkaloids, carotenoids, organosulfur compounds, phenolics, and phytosterols, are health-promoting bioactive compounds that help in the prevention and mitigation of chronic diseases and microbial infections beyond basic nutrition supply. This article covers recent advances in the extraction, chemical composition, therapeutic potential (nutraceutical and antimicrobial), and delivery of black and green cardamom-derived phytochemicals. In recent years, advance extraction techniques (e.g., enzyme- assisted-, instant controlled pressure drop-, microwave- assisted-, pressurized liquid-, sub- critical-, supercritical fluid-, and ultrasound-assisted extractions) have been applied to obtain phytochemicals from cardamom. The bioactive constituents identification techniques, specifically GC-MS analysis revealed that 1,8-cineole and α-terpinyl acetate were the principle bioactive components in black and green cardamom. Regarding therapeutic potential, research findings have indicated desirable health properties of cardamom phytochemicals, including antioxidant-, anti-hypercholesterolemic, anti-platelet aggregation, anti-hypertensive, and gastro-protective effects. Moreover, antimicrobial investigations revealed that cardamom phytochemicals effectively inhibited growth of pathogenic microorganisms (bacteria and fungi), biofilm formation inhibition (Gram-negative and Gram-positive bacteria) and bacterial quorum sensing inhibition. Encapsulation and delivery vehicles, including microcapsules, nanoparticles, nanostructured lipid carriers, and nanoliposomes were effective strategies to enhance their stability, bioavailability and bioefficacy. In conclusion, cardamom phytochemicals had promising therapeutic potentials (antioxidant and antimicrobial) due to polyphenols, thus could be used as functional additive to increase shelf life, inhibit oxidative rancidity and confer pleasant aroma to commercial edibles as well as mitigate oxidative stress and lifestyle related chronic diseases (e.g., cardiovascular and gastrointestinal diseases). A future perspective concerning the fabrication of functional foods, nutraceuticals and antibiotics to promote cardamom phytochemicals applications as biotherapeutic agents at large-scale requires thorough investigations, e.g., optimum dose and physical form of supplementation to obtain maximum health benefits.
Collapse
|