1
|
Bibi A, Zhang F, Shen J, Din AU, Xu Y. Behavioral alterations in antibiotic-treated mice associated with gut microbiota dysbiosis: insights from 16S rRNA and metabolomics. Front Neurosci 2025; 19:1478304. [PMID: 40092066 PMCID: PMC11906700 DOI: 10.3389/fnins.2025.1478304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The gut and brain interact through various metabolic and signaling pathways, each of which influences mental health. Gut dysbiosis caused by antibiotics is a well-known phenomenon that has serious implications for gut microbiota-brain interactions. Although antibiotics disrupt the gut microbiota's fundamental structure, the mechanisms that modulate the response and their impact on brain function are still unclear. It is imperative to comprehend and investigate crucial regulators and factors that play important roles. We aimed to study the effect of long-term antibiotic-induced disruption of gut microbiota, host metabolomes, and brain function and, particularly, to determine the basic interactions between them by treating the C57BL/6 mice with two different, most commonly used antibiotics, ciprofloxacin and amoxicillin. Anxiety-like behavior was confirmed by the elevated plus-maze test and open field test. Gut microbes and their metabolite profiles in fecal, serum, and brain samples were determined by 16S rRNA sequencing and untargeted metabolomics. In our study, long-term antibiotic treatment exerted anxiety-like effects. The fecal microbiota and metabolite status revealed that the top five genera found were Lactobacillus, Bacteroides, Akkermansia, Ruminococcus_gnavus_group, and unclassified norank_f_Muribaculaceae. The concentration of serotonin, L-Tyrosine, 5-Hydroxy-L-tryptophan, L-Glutamic acid, L-Glutamate, 5-Hydroxyindole acetic acid, and dopaminergic synapsis was comparatively low, while adenosine was high in antibiotic-treated mice. The KEGG enrichment analysis of serum and brain samples showed that amino acid metabolism pathways, such as tryptophan metabolism, threonine metabolism, serotonergic synapsis, methionine metabolism, and neuroactive ligand-receptor interaction, were significantly decreased in antibiotic-treated mice. Our study demonstrates that long-term antibiotic use induces gut dysbiosis and alters metabolic responses, leading to the dysregulation of brain signaling molecules and anxiety-like behavior. These findings highlight the complex interactions between gut microbiota and metabolic functions, providing new insights into the influence of microbial communities on gut-brain communication.
Collapse
Affiliation(s)
- Asma Bibi
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Famin Zhang
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jilong Shen
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ahmad Ud Din
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Yuanhong Xu
- The Key Laboratory of Microbiology and Parasitology Anhui, School of Basic Medical Sciences, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Laboratory Diagnostics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Wei D, Zhu L, Wang Y, Liu M, Huang L, Yang H, Wang H, Shi D, Wang G, Ling F, Yu Q, Li P. Variation in the intestinal bacterial community composition under different water temperature culture conditions in largemouth bass (Micropterus salmoides). J Appl Microbiol 2024; 135:lxae283. [PMID: 39509281 DOI: 10.1093/jambio/lxae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
AIMS This study aimed to investigate the impact of temperature on the intestinal microbiota of largemouth bass using 16S rRNA gene amplicon sequencing, focusing on the under-explored role of abiotic factors in shaping the gut microbial community. METHODS AND RESULTS Five water temperature groups (20.0 ± 0.2°C, 25.0 ± 0.2°C, 28.0 ± 0.2°C, 31.0 ± 0.2°C, and 35.0 ± 0.2°C) were established, each with three replicates. Significant variations in intestinal bacterial community composition were observed across these conditions. Elevated temperatures (31.0 ± 0.2°C and 35.0 ± 0.2°C) led to an increase in opportunistic pathogens such as OTU180 Vibrio and OTU2015 Vogesella (P < 0.05). Species correlation network analysis showed a shift toward more positive relationships among intestinal microbes at higher temperatures (P < 0.05). Ecological process analysis highlighted a greater role of ecological drift in microbial community structure at 31.0 ± 0.2°C and 35.0 ± 0.2°C (P < 0.05). CONCLUSIONS The study suggests that higher temperatures may predispose largemouth bass to opportunistic pathogens by altering their intestinal microbiota. Effective water temperature management is crucial for largemouth bass aquaculture to mitigate pathogen risks and maintain a balanced intestinal microbiota. This research provides critical insights into the temperature-microbiota relationship and offers practical recommendations for aquaculture practices.
Collapse
Affiliation(s)
- Dongdong Wei
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Libo Zhu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Yibing Wang
- College of Oceanography and Biotechnology, Guangxi University for Nationalities, No. 188, East University Road, Nanning 530006, P.R. China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Lin Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Hui Yang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, No. 999, Huicheng Ring Road, Shanghai 201306, China
| | - Deqiang Shi
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road,Yangling 712100, P.R. China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road,Yangling 712100, P.R. China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| |
Collapse
|
3
|
Tian H, Xiong J, Sun J, Du F, Xu G, Yu H, Chen C, Lou X. Dynamic transformation in flavor during hawthorn wine fermentation: Sensory properties and profiles of nonvolatile and volatile aroma compounds coupled with multivariate analysis. Food Chem 2024; 456:139982. [PMID: 38876062 DOI: 10.1016/j.foodchem.2024.139982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Fermentation stage is a crucial factor for flavor profiles formation of hawthon wine. Thus, comprehensive knowledge of dynamic relationship between nonvolatile (NVOCs) and volatile aroma compounds (VOCs) from hawthorn wine at different fermentation stages was investigated by GC-MS and HPLC coupled with multivariate analysis. The increase of alcohols/esters/acids but decrease of terpenes/aldehydes/ketones was observed as fermentation extension. Specifically, OAV of ethyl acetate, ethyl caprylate, and ethyl caprate was > 50 from the 3rd day to 10th day, giving more fruity properties. Multivariate analysis showed that 1-hexanol, ethyl myristate, isobutyric acid, et al., were linked to the sensory evaluation of "sweet", "floral" and "fruity", and fructose, glucose and bitter amino acids were responsible for reduction of "bitterness" and "astringency". Additionally, VOCs were positively correlated with organic acids while negative to amino acids/soluble sugars, probably due to metabolization as precursors, providing references for aroma enhancement by regulating NVOCs precursors.
Collapse
Affiliation(s)
- Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Juanjuan Xiong
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiashu Sun
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fenglin Du
- Shaanxi Leadflow Technology Co., Ltd, Shaanxi 30032, China
| | - Guofang Xu
- Shaanxi Leadflow Technology Co., Ltd, Shaanxi 30032, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinman Lou
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
4
|
Yang H, Hao L, Jin Y, Huang J, Zhou R, Wu C. Functional roles and engineering strategies to improve the industrial functionalities of lactic acid bacteria during food fermentation. Biotechnol Adv 2024; 74:108397. [PMID: 38909664 DOI: 10.1016/j.biotechadv.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In order to improve the flavor profiles, food security, probiotic effects and shorten the fermentation period of traditional fermented foods, lactic acid bacteria (LAB) were often considered as the ideal candidate to participate in the fermentation process. In general, LAB strains possessed the ability to develop flavor compounds via carbohydrate metabolism, protein hydrolysis and amino acid metabolism, lipid hydrolysis and fatty acid metabolism. Based on the functional properties to inhibit spoilage microbes, foodborne pathogens and fungi, those species could improve the safety properties and prolong the shelf life of fermented products. Meanwhile, influence of LAB on texture and functionality of fermented food were also involved in this review. As for the adverse effect carried by environmental challenges during fermentation process, engineering strategies based on exogenous addition, cross protection, and metabolic engineering to improve the robustness and of LAB were also discussed in this review. Besides, this review also summarized the potential strategies including microbial co-culture and metabolic engineering for improvement of fermentation performance in LAB strains. The authors hope this review could contribute to provide an understanding and insight into improving the industrial functionalities of LAB.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Ge X, Zhu S, Yang H, Wang X, Li J, Liu S, Xing R, Li P, Li K. Impact of O-acetylation on chitin oligosaccharides modulating inflammatory responses in LPS-induced RAW264.7 cells and mice. Carbohydr Res 2024; 542:109177. [PMID: 38880715 DOI: 10.1016/j.carres.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Chitin oligosaccharides have garnered significant attention due to their biological activities, particularly their immunomodulatory properties. However, O-acetylation in chemically preparing chitin oligosaccharides seems inevitable and leads to some uncertainty on the bioactivity of chitin oligosaccharides. In this study, an O-acetyl-free chitin oligosaccharides and three different O-acetylated chitin oligosaccharides with degree of polymerization ranging from 2 to 6 were prepared using ammonia hydrolysis, and their structures and detailed components were further characterized with FTIR, NMR and MS. Subsequently, the effects of O-acetylation on the immunomodulatory activity of chitin oligosaccharides were investigated in vitro and in vivo. The results suggested that the chitin oligosaccharides with O-acetylation exhibited better inflammatory inhibition than pure chitin oligosaccharides, significantly reducing the expression of inflammatory factors, such as IL-6 and iNOS, in the LPS-induced RAW264.7 macrophage. The chitin oligosaccharides with a degree of O-acetylation of 93 % was found to effectively alleviate LPS-induced endotoxemia in mice, including serum inflammation indices reduction and damage repairment of the intestinal liver, and kidney tissues.
Collapse
Affiliation(s)
- Xiangyun Ge
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Siqi Zhu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Haoyue Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xin Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jingwen Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
6
|
Wang B, Tang X, Mao B, Zhang Q, Tian F, Zhao J, Chen W, Cui S. Comparison of the hepatoprotection of intragastric and intravenous cyanidin-3-glucoside administration: focus on the key metabolites and gut microbiota modulation. Food Funct 2024; 15:7441-7451. [PMID: 38904342 DOI: 10.1039/d4fo01608d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver injury is a life-threatening condition, and the hepatoprotective potential of cyanidin-3-glucoside (C3G) has been previously demonstrated. However, due to the low bioavailability, it has been doubtful that relatively low concentrations of intact C3G in vivo could account for these bioactivities. In this study, the hepatoprotective effects of intragastric and intravenous administration of C3G were investigated in a CCl4 induced liver injury model. Intragastric C3G administration was more effective than intravenous C3G injection in reducing serum damage biomarkers, oxidative stress, and inflammatory responses, indicating that absorption of C3G into the bloodstream does not fully account for its observed benefits in vivo. Furthermore, intragastric C3G administration modulated the gut microbiota structure and increased the contents of five metabolites in the feces and serum with high inter-individual variation, indicating the key role of the interaction between C3G and the gut microbiota. At equivalent doses, the metabolites cyanidin and protocatechuic acid exhibited greater efficacy than C3G in reducing apoptosis and ROS production by activating the Nrf2 pathway in an AAPH-induced oxidative stress model. To achieve the desired health effects via C3G-rich food intake, more attention should be paid to microbially derived catabolites. Screening of specific metabolite-producing strains will help overcome individual differences and enhance the health-promoting effects of C3G.
Collapse
Affiliation(s)
- Bulei Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| |
Collapse
|
7
|
Ma R, Fan Y, Yang X, Liu C, Wan J, Xu C, Wang R, Feng J, Jiao Z. Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116547. [PMID: 38843744 DOI: 10.1016/j.ecoenv.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.
Collapse
Affiliation(s)
- Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqin Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Liu
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Cui Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Lin M, Yanjun C. Research progress on the mechanism of probiotics regulating cow milk allergy in early childhood and its application in hypoallergenic infant formula. Front Nutr 2024; 11:1254979. [PMID: 38419849 PMCID: PMC10900986 DOI: 10.3389/fnut.2024.1254979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Some infants and young children suffer from cow's milk allergy (CMA), and have always mainly used hypoallergenic infant formula as a substitute for breast milk, but some of these formulas can still cause allergic reactions. In recent years, it has been found that probiotic nutritional interventions can regulate CMA in children. Scientific and reasonable application of probiotics to hypoallergenic infant formula is the key research direction in the future. This paper discusses the mechanism and clinical symptoms of CMA in children. This review critically ex- amines the issue of how probiotics use intestinal flora as the main vector to combine with the immune system to exert physiological functions to intervene CMA in children, with a particular focus on four mechanisms: promoting the early establishment of intestinal microecological balance, regulating the body's immunity and alleviating allergic response, enhancing the intestinal mucosal barrier function, and destroying allergen epitopes. Additionally, it overviews the development process of hypoallergenic infant formula and the research progress of probiotics in hypoallergenic infant formula. The article also offers suggestions and outlines potential future research directions and ideas in this field.
Collapse
Affiliation(s)
| | - Cong Yanjun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, College of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
9
|
Liang C, Niu HY, Lyu LZ, Wu YF, Zhang LW. Profiles of Intestinal Flora in Breastfed Obese Children and Selecting Functional Strains Against Obesity. Mol Nutr Food Res 2024; 68:e2300735. [PMID: 38227364 DOI: 10.1002/mnfr.202300735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Indexed: 01/17/2024]
Abstract
SCOPE Breast milk has the potential to prevent childhood obesity by providing probiotics, but there are still instances of obesity in breastfed children. METHODS AND RESULTS This study investigates the difference in intestinal flora structure between breastfed children with obesity (OB-BF) and normal-weight breastfed children (N-BF). Building upon this foundation, it employs both cell and mouse models to identify an antiobesity strain within the fecal matter of N-BF children and explore its underlying mechanisms. The results reveal a reduction in lactobacillus levels within the intestinal flora of OB-BF children compared to N-BF children. Consequently, Lactobacillus plantarum H-72 (H-72) is identified as a promising candidate due to its capacity to stimulate glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine cells (ECCs). In vivo, H-72 effectively increases serum GLP-1 concentration, reduces food intake, regulates the expression of genes related to energy metabolism (SCD-1, FAS, UCP-1, and UCP-3), and regulates gut microbiota structure in mice. Moreover, the lipoteichoic acid of H-72 activates toll-like receptor 4 to enhanced GLP-1 secretion in STC-1 cells. CONCLUSIONS L. plantarum H-72 is screened out for its potential antiobesity effect, which presents a potential and promising avenue for future interventions aimed at preventing pediatric obesity in breastfed children.
Collapse
Affiliation(s)
- Cong Liang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
10
|
Xi L, Wen X, Jia T, Han J, Qin X, Zhang Y, Wang Z. Comparative study of the gut microbiota in three captive Rhinopithecus species. BMC Genomics 2023; 24:398. [PMID: 37452294 PMCID: PMC10349479 DOI: 10.1186/s12864-023-09440-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Snub-nosed monkeys are highly endangered primates and their population continues to decline with the habitat fragmentation. Artificial feeding and breeding is an important auxiliary conservation strategy. Studies have shown that changes and imbalances in the gut microbiota often cause gastrointestinal problems in captive snub-nosed monkeys. Here, we compare the gut microbiota composition, diversity, and predicted metabolic function of three endangered species of snub-nosed monkeys (Rhinopithecus bieti, R. brelichi, and R. roxellana) under the same captive conditions to further our understanding of the microbiota of these endangered primates and inform captive conservation strategies. 16 S rRNA gene sequencing was performed on fecal samples from 15 individuals (R. bieti N = 5, R. brelichi N = 5, R. roxellana N = 5). RESULTS The results showed that the three Rhinopithecus species shared 24.70% of their amplicon sequence variants (ASVs), indicating that the composition of the gut microbiota varied among the three Rhinopithecus species. The phyla Firmicutes and Bacteroidetes represented 69.74% and 18.45% of the core microbiota. In particular, analysis of microbiota diversity and predicted metabolic function revealed a profound impact of host species on the gut microbiota. At the genus level, significant enrichment of cellulolytic genera including Rikenellaceae RC9 gut group, Ruminococcus, Christensenellaceae R7 group, UCG 004 from Erysipelatoclostridiaceae, and UCG 002 and UCG 005 from Oscillospiraceae, and carbohydrate metabolism including propionate and butyrate metabolic pathways in the gut of R. bieti indicated that R. bieti potentially has a stronger ability to use plant fibers as energy substances. Bacteroides, unclassified Muribaculaceae, Treponema, and unclassified Eubacterium coprostanoligenes group were significantly enriched in R. brelichi. Prevotella 9, unclassified Lachnospiraceae, and unclassified UCG 010 from Oscillospirales UCG 010 were significantly enriched in R. roxellana. Among the predicted secondary metabolic pathways, the glycan biosynthesis and metabolism had significantly higher relative abundance in the gut of R. brelichi and R. roxellana than in the gut of R. bieti. The above results suggest that different Rhinopithecus species may have different strategies for carbohydrate metabolism. The Principal coordinate analysis (PCoA) and Unweighted pair-group method with arithmetic mean (UPGMA) clustering tree revealed fewer differences between the gut microbiota of R. brelichi and R. roxellana. Correspondingly, no differences were detected in the relative abundances of functional genes between the two Rhinopithecus species. CONCLUSION Taken together, the study highlights that host species have an effect on the composition and function of the gut microbiota of snub-nosed monkeys. Therefore, the host species should be considered when developing nutritional strategies and investigating the effects of niche on the gut microbiota of snub-nosed monkeys.
Collapse
Affiliation(s)
- Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu Normal University, Shangqiu, China
| | - Xiaohui Wen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu Normal University, Shangqiu, China.
| | - Xinxi Qin
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Yanzhen Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Zihan Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| |
Collapse
|