1
|
Ghosh S, Mandal RK, Mukherjee A, Roy S. Nanotechnology in the manufacturing of sustainable food packaging: a review. DISCOVER NANO 2025; 20:36. [PMID: 39951222 PMCID: PMC11828777 DOI: 10.1186/s11671-025-04213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
At present, there is an escalating concern among consumers regarding the spoilage and safety of food items. Furthermore, the packaging materials used within the packaging industry are typically unsustainable food packaging. To confront this significant challenge, nanotechnology may offer a feasible alternative to standard packaging practices. Several naturally derived polymers are capable of substituting petrochemical-based polymers. The application of biopolymers has demonstrated an ability to prolong the shelf life of food items. However, these materials frequently exhibit limited functionality. The incorporation of nanomaterials can significantly enhance the capabilities of these films. Furthermore, the fields of nanotechnology and food packaging are trending areas of research that hold promise for addressing various challenges within the packaging sector. Integrating nanomaterials into food packaging materials yields significant advantages relative to traditional packaging approaches. It contributes to enhanced food quality and safety, provides consumers with insights into their dietary practices, enables the repair of packaging tears, and increases the longevity of food storage. Incorporating various nanomaterials into biobased films has gained prominence in sustainable food packaging. This review explores the general overview of the historical perspective of nanotechnology. In addition, we addressed the various kinds of nanomaterials involved in food packaging. The functions of nanomaterials in food packaging applications are briefly reviewed. The compilation and discussion highlight the nanotechnology for safe, sustainable, and satisfiable food packaging. Finally, the toxicity, safety, and future trends of the nanomaterials in sustainable food packaging were briefly summarized. This review underscores the necessity of nanotechnology in sustainable food packaging.
Collapse
Affiliation(s)
- Sabyasachi Ghosh
- Department of Biotechnology, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India.
| | - Rakesh Kumar Mandal
- Department of Physics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Ayan Mukherjee
- Department of Environment, West Bengal Pollution Control Board, Govt. of West Bengal, Kolkata, 700106, India
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
2
|
Huang M, Liu X, Ren Y, Huang Q, Shi Y, Yuan P, Chen M. Quercetin: A Flavonoid with Potential for Treating Acute Lung Injury. Drug Des Devel Ther 2024; 18:5709-5728. [PMID: 39659949 PMCID: PMC11630707 DOI: 10.2147/dddt.s499037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
In intensive care units, acute lung injury (ALI) is a syndrome that is frequently encountered. It is associated with a high rate of morbidity and mortality. Despite the extensive research conducted by the medical community on its treatment, no specific effective drugs have been identified. Quercetin is a natural flavonoid with many biological activities and pharmacological effects. Research indicates that Quercetin can modulate various targets and signaling pathways, inhibiting oxidative stress, inflammatory responses, ferroptosis, apoptosis, fibrosis, and bacterial and viral infections in ALI. This regulation suggests its potential therapeutic application for the condition. Currently, there is no comprehensive review addressing the application of Quercetin in the treatment of ALI. This paper begins with a classification of ALI, followed by a detailed summary of the mechanisms through which Quercetin may treat ALI to evaluate its potential as a novel therapeutic option.
Collapse
Affiliation(s)
- Ma Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Xinxin Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yuanzhi Shi
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ping Yuan
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| |
Collapse
|
3
|
Karahaliloğlu Z, Hazer B. Curcumin- and quercetin-functionalized polypropylene membranes as active food packaging material. J Food Sci 2024; 89:6575-6589. [PMID: 39218807 DOI: 10.1111/1750-3841.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
A wide range of active agents, synthetic and natural agents such as essential oils, chitosan and polyphneols consisting of curcumin, gallic acid, anthocyanins, and catechins have been used in order to develop antimicrobial packaging systems, and among them, natural polyphenolic compounds, specially curcumin (Cur) has great potential due to effective biological activities in developing food packaging material. Quercetin (Quer) is also the mostly studied flavonol as a color-changing indicator in the food industry and has been already developed as a realistic alternative for smart and active food packaging. The reason for choosing these two polyphenolic compounds is that they simultaneously possess many beneficial properties such as antioxidant, antibacterial, antiviral, antitumoral, and anti-inflammatory effects. Additionally, the main objective of the study is to combine polypropylene (PP), which is the most preferred and cost-effective polymer in the packaging industry, with these active ingredients, rather than using more expensive polymer types. In this context, PP-Quer or PP-Cur membranes, which are new experiences based on these literatures were chemically characterized by Fourier transform infrared spectroscopy, and the surface morphology of these composite membranes was characterized by scanning electron microscopy. The antibacterial response against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria species was investigated. Furthermore, the reactive oxygen species generation and anticancer activity of these composite membranes using human colorectal adenocarcinoma (HT-29) were observed. We proposed that PP-Quer or PP-Cur composite membranes can be a potential candidate as active packaging material in the food industry.
Collapse
Affiliation(s)
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevsehir, Turkey
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
4
|
Liu J, Yu H, Kong J, Ge X, Sun Y, Mao M, Wang DY, Wang Y. Preparation, characterization, stability, and controlled release of chitosan-coated zein/shellac nanoparticles for the delivery of quercetin. Food Chem 2024; 444:138634. [PMID: 38330608 DOI: 10.1016/j.foodchem.2024.138634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Quercetin, an essential flavonoid compound, exhibits diverse biological activities including anti-inflammatory and antioxidant effects. Nevertheless, due to its inadequate solubility in water and vulnerability to degradation, pure quercetin is constrainedly utilized in pharmaceutical formulations and functional foods. Considering the existing scarcity of nanoparticles consisted of zein and hydrophobic biopolymers, this study developed a quercetin-loaded nanoencapsulation based on zein, shellac, and chitosan (QZSC). When the mass ratio of zein to chitosan was 4:1, the encapsulation efficiency of QZSC reached 74.95%. The ability of QZSC for scavenging DPPH radicals and ABTS radicals increased from 59.2% to 75.4% and from 47.0% to 70.2%, respectively, compared to Quercetin. For QZSC, the maximum release amount of quercetin reached 59.62% in simulated gastric fluid and 81.64% in simulated intestinal fluid, achieving controlled and regulated release in vitro. In summary, this study offers a highly promising encapsulation strategy for hydrophobic bioactive substances that are prone to instability.
Collapse
Affiliation(s)
- Jiawen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - David Y Wang
- Hong Kong Baptist University, Hong Kong Special Administrative Region; Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, China.
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
5
|
Roy S, Ghosh T, Zhang W, Rhim JW. Recent progress in PBAT-based films and food packaging applications: A mini-review. Food Chem 2024; 437:137822. [PMID: 37897823 DOI: 10.1016/j.foodchem.2023.137822] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Bioplastics are a promising alternative to non-biodegradable plastics. One of these bioplastics, PBAT (polybutylene adipate co-terephthalate), is a polyester-based bioplastic commonly used to manufacture flexible packaging films. PBAT-based films have high flexibility but relatively low strength compared to other bioplastics. The strength of PBAT films can be improved by blending them with other fillers/polymers. Additionally, the functionality of PBAT films can be enhanced by incorporating bioactive functional fillers. The physical and functional properties of PBAT films produced by adding active ingredients provide functionality and are a good alternative to non-degradable petrochemical-based plastics. The PBAT-based functional films protect food and improve packaged foods' quality and life span. Thus, this review provides recent advances in PBAT-based films and their use in active food packaging applications. After briefly describing the different fabrication methods of PBAT films, various important physical and functional properties and biodegradability are comprehensively discussed. PBAT-based active packaging film in real-time food packaging is also briefly covered. Through this review, more attention is expected to be focused on research on PBAT-based biodegradable active food packaging.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Tabli Ghosh
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028, India
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Masek A, Olejnik O, Czechowski L, Kaźmierczyk F, Miszczak S, Węgier A, Krauze S. Epoxy Resin-Based Materials Containing Natural Additives of Plant Origin Dedicated to Rail Transport. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7080. [PMID: 38005010 PMCID: PMC10672540 DOI: 10.3390/ma16227080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023]
Abstract
The presented study is focused on the modification of commercially available epoxy resin with flame retardants by means of using natural substances, including quercetin hydrate and potato starch. The main aim was to obtain environmentally friendly material dedicated to rail transport that is resistant to the aging process during exploitation but also more prone to biodegradation in environmental conditions after usage. Starch is a natural biopolymer that can be applied as a pro-ecological filler, which may contribute to degradation in environmental conditions, while quercetin hydrate is able to prevent a composite from premature degradation during exploitation. To determine the aging resistance of the prepared materials, the measurements of hardness, color, mechanical properties and surface free energy were performed before and after solar aging. To assess the mechanical properties of the composite material, one-directional tensile tests were performed for three directions (0, 90, 45 degrees referred to the plate edges). Moreover, the FT-IR spectra of pristine and aged materials were obtained to observe the changes in chemical structure. Furthermore, thermogravimetric analysis was conducted to achieve information about the impact of natural substances on the thermal resistance of the achieved composites.
Collapse
Affiliation(s)
- Anna Masek
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
| | - Olga Olejnik
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
| | - Leszek Czechowski
- Department of Strength of Materials, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (L.C.); (F.K.)
| | - Filip Kaźmierczyk
- Department of Strength of Materials, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (L.C.); (F.K.)
| | - Sebastian Miszczak
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland;
| | - Aleksandra Węgier
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
- S.Z.T.K. “TAPS”—Maciej Kowalski, ul. Borowa 4, 94-247 Lodz, Poland;
| | - Sławomir Krauze
- S.Z.T.K. “TAPS”—Maciej Kowalski, ul. Borowa 4, 94-247 Lodz, Poland;
| |
Collapse
|
7
|
Bose I, Roy S, Yaduvanshi P, Sharma S, Chandel V, Biswas D. Unveiling the Potential of Marine Biopolymers: Sources, Classification, and Diverse Food Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4840. [PMID: 37445154 DOI: 10.3390/ma16134840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Environmental concerns regarding the usage of nonrenewable materials are driving up the demand for biodegradable marine biopolymers. Marine biopolymers are gaining increasing attention as sustainable alternatives in various industries, including the food sector. This review article aims to provide a comprehensive overview of marine biopolymers and their applications in the food industry. Marine sources are given attention as innovative resources for the production of sea-originated biopolymers, such as agar, alginate, chitin/chitosan, and carrageenan, which are safe, biodegradable, and are widely employed in a broad spectrum of industrial uses. This article begins by discussing the diverse source materials of marine biopolymers, which encompass biopolymers derived from seaweed and marine animals. It explores the unique characteristics and properties of these biopolymers, highlighting their potential for food applications. Furthermore, this review presents a classification of marine biopolymers, categorizing them based on their chemical composition and structural properties. This classification provides a framework for understanding the versatility and functionality of different marine biopolymers in food systems. This article also delves into the various food applications of marine biopolymers across different sectors, including meat, milk products, fruits, and vegetables. Thus, the motive of this review article is to offer a brief outline of (a) the source materials of marine biopolymers, which incorporates marine biopolymers derived from seaweed and marine animals, (b) a marine biopolymer classification, and (c) the various food applications in different food systems such as meat, milk products, fruits, and vegetables.
Collapse
Affiliation(s)
- Ipsheta Bose
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Pallvi Yaduvanshi
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Somesh Sharma
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Vinay Chandel
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| |
Collapse
|