1
|
Günal-Köroğlu D, Karabulut G, Ozkan G, Yılmaz H, Gültekin-Subaşı B, Capanoglu E. Allergenicity of Alternative Proteins: Reduction Mechanisms and Processing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7522-7546. [PMID: 40105205 PMCID: PMC11969658 DOI: 10.1021/acs.jafc.5c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The increasing popularity of alternative proteins has raised concerns about allergenic potential, especially for plant-, insect-, fungal-, and algae-based proteins. Allergies arise when the immune system misidentifies proteins as harmful, triggering IgE-mediated reactions that range from mild to severe. Main factors influencing allergenicity include protein structure, cross-reactivity, processing methods, and gut microbiota. Disruptions in gut health or microbiota balance heighten risks. Common allergens in legumes, cereals, nuts, oilseeds, single-cell proteins, and insect-based proteins are particularly challenging, as they often remain stable and resistant to heat and digestion despite various processing techniques. Processing methods, such as roasting, enzymatic hydrolysis, and fermentation, show promise in reducing allergenicity by altering protein structures and breaking down epitopes that trigger immune responses. Future research should focus on optimizing these methods to ensure that they effectively reduce allergenic risks while maintaining the nutritional quality and safety of alternative protein products.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Gulsah Karabulut
- Department
of Food Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Türkiye
| | - Gulay Ozkan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Hilal Yılmaz
- Department
of Biotechnology, Faculty of Science, Bartın
University, 74100 Kutlubey Campus, Bartın, Türkiye
| | - Büşra Gültekin-Subaşı
- Center
for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| |
Collapse
|
2
|
Yang J, Chen Y, Zhang L, Zhou S, You L, Song J. Application of edible insects to food products: A review on the functionality, bioactivity and digestibility of insect proteins under high-pressure/ultrasound processing. Food Chem 2025; 468:142469. [PMID: 39693885 DOI: 10.1016/j.foodchem.2024.142469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Edible insect products are recognized for their high-quality protein content and an array of essential nutrients, including minerals and fatty acids. As the demand for sustainable protein sources grows, insect-based foods are gaining attention as a viable solution to help address global food security. Emerging technologies including high-pressure processing (HPP) and ultrasound (US) have the potential to influence the key functional properties of insect proteins-such as solubility, gelling ability, foamability, and emulsifying capacity-making them more suitable for incorporation into various food products. Additionally, the physicochemical properties and functionality of these proteins can be altered by digestive processes. This review focuses on the physicochemical and functional properties, as well as the biological activities, of edible insects modified by HHP and US technologies. It also explores, for the first time, how digestion impacts the quality and biological activities of insect-based products.
Collapse
Affiliation(s)
- Jing Yang
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; Modern Industry Faculty of Food Nutrition and Health (Hot Pot), Chongqing Technology and Business University, Chongqing 400067, China.
| | - Yan Chen
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Linqing Zhang
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Shuling Zhou
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Linfeng You
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; Modern Industry Faculty of Food Nutrition and Health (Hot Pot), Chongqing Technology and Business University, Chongqing 400067, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Awad Y, Bernard H, Adel-Patient K, Hazebrouck S. New dietary trends and alternative proteins: the emergence of novel food allergens. Curr Opin Clin Nutr Metab Care 2025; 28:44-49. [PMID: 39417858 DOI: 10.1097/mco.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW New dietary trends driven by environmental and health considerations will undoubtedly lead to the emergence of novel food allergens. Assessment of the allergenic risk of new or modified protein-containing food sources and ingredients, as well as surveillance of emerging food allergies, is then required. RECENT FINDINGS Developments of in silico and in vitro models apprehending protein capacity to cross-react with other homologous proteins and to induce a de novo allergic sensitization are ongoing to better integrate multiple parameters such as 3D structural information or major histocompatibility complex class II (MHC-II) presentation propensity. However, the effects of food matrices and food processing still need to be addressed in these models. Consequently, clinical and postmarket surveillance remain of critical importance to alert on emergent food allergies, which are modulated by regional dietary practices. SUMMARY Monitoring of the emergence of food allergens requires close collaborations between allergologists, consumers, patient associations and food safety authorities. We also need to get a consensus on an acceptable level of allergenic risk that offers the possibility to develop and market innovative and sustainable food products.
Collapse
Affiliation(s)
- Yara Awad
- Université Paris Saclay, CEA, INRAE, MTS/Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
4
|
Pospiech M, Pečová M, Bartlová M, Javůrková Z, Kopecká A, Šebelová K, Pospíšil O, Kulma M, Folke J, Tremlová B, Kouřimská L, Hajšlová J. Development of Indirect Sandwich ELLA for Detection of Insects in Food. APPLIED SCIENCES 2024; 14:10794. [DOI: 10.3390/app142310794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Edible insects have been officially classified as food in the European Union since 2015. Currently, four insect species are approved for food use. However, no official method for detecting insects in food has been recognized to date. To establish a simple analytical method for insect detection in food, we developed an indirect sandwich (enzyme-linked lectin sorbent assay) ELLA specific for N-acetylglucosamine in chitin and chitosan polymers. The validation of the method demonstrated that the ELLA developed in this study is reliable for insect detection. The limit of detection (LOD) and quantification (LOQ) were 0.006 and 0.028 mg/mL, respectively. Intra-day precision ranged from 2.45% to 30.29%, and inter-day precision from 0.36% to 12.87%. Significant differences in the total amount of chitin and chitosan were observed among the insect products, processed insect products, and samples without any insect addition (p < 0.05).
Collapse
Affiliation(s)
- Matej Pospiech
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Martina Pečová
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Marie Bartlová
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zdeňka Javůrková
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Anežka Kopecká
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Kateřina Šebelová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Ondřej Pospíšil
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Martin Kulma
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Jakub Folke
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Bohuslava Tremlová
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Lenka Kouřimská
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| |
Collapse
|
5
|
Liu M, Chen H, Pan F, Wu X, Zhang Y, Fang X, Li X, Tian W, Peng W. Propolis ethanol extract functionalized chitosan/Tenebrio molitor larvae protein film for sustainable active food packaging. Carbohydr Polym 2024; 343:122445. [PMID: 39174125 DOI: 10.1016/j.carbpol.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
The application of novel insect proteins as future food resources in the food field has attracted more and more attention. In this study, a biodegradable antibacterial food packaging material with beneficial mechanical properties was developed using Tenebrio molitor larvae protein (TMP), chitosan (CS) and propolis ethanol extract (PEE) as raw materials. PEE was uniformly dispersed in the film matrix and the composite films showed excellent homogeneity and compatibility. There are strong intermolecular hydrogen bond interactions between CS, TMP, and PEE in the films, which exhibit the structure characteristics of amorphous materials. Compared with CS/TMP film, the addition of 3 % PEE significantly enhanced the elongation at break (34.23 %), water vapor barrier property (22.94 %), thermal stability (45.84 %), surface hydrophobicity (20.25 %), and biodegradability of the composite film. The composite film has strong antioxidant and antimicrobial properties, which were enhanced with the increase of PEE content. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. Composite films can effectively delay the spoilage of strawberries and extend the shelf life of strawberries. Biodegradable active packaging film developed with insect protein and chitosan can be used as a substitute for petroleum-based packaging materials, and has broad application prospects in the field of fruits preservation.
Collapse
Affiliation(s)
- Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinning Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuan Zhang
- School of plant protection, Anhui agricultural university, Hefei 230036, China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
6
|
Bogusz R, Bryś J, Onopiuk A, Pobiega K, Tomczak A, Kowalczewski PŁ, Rybak K, Nowacka M. The Impact of Drying Methods on the Quality of Blanched Yellow Mealworm ( Tenebrio molitor L.) Larvae. Molecules 2024; 29:3679. [PMID: 39125083 PMCID: PMC11314216 DOI: 10.3390/molecules29153679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The growing world population necessitates the implementation of appropriate processing technologies for edible insects. The objective of this study was to examine the impact of distinct drying techniques, including convective drying at 70 °C (70CD) and 90 °C (90CD) and freeze-drying (FD), on the drying kinetics, physical characteristics (water activity, color), chemical characteristics (chemical composition, amino acid profile, oil properties, total polyphenol content and antioxidant activity, mineral composition, FTIR), and presence of hazards (allergens, microorganisms) of blanched yellow mealworm larvae. The freeze-drying process results in greater lightness and reduced moisture content and water activity. The study demonstrated that the freeze-dried insects exhibited lower contents of protein and essential amino acids as compared to the convective-dried insects. The lowest content of total polyphenols was found in the freeze-dried yellow mealworm larvae; however, the highest antioxidant activity was determined for those insects. Although the oil isolated from the freeze-dried insects exhibited the lowest acid and peroxide values, it proved to have the lowest PUFA content and oxidative stability. All the samples met the microbiological criteria for dried insects. The results of the study demonstrate that a high temperature during the CD method does not result in the anticipated undesirable changes. It appears that freeze-drying is not the optimal method for preserving the nutritional value of insects, particularly with regard to the quality of protein and oil.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Aneta Tomczak
- Department of Food Analysis and Biochemistry, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-623 Poznan, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
7
|
Stelios V, Ilias G, Ioannis P, Christos A, Elias P, Paschalis F. Effect of three different insect larvae on growth performance and antioxidant activity of thigh, breast, and liver tissues of chickens reared under mild heat stress. Trop Anim Health Prod 2024; 56:80. [PMID: 38358592 PMCID: PMC10869369 DOI: 10.1007/s11250-024-03923-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
This study investigated the potential of insect-based diets to mitigate heat stress impact on broiler chickens, focusing on growth performance and antioxidant stability. Four dietary groups were examined, including a control and three treated groups with Tenebrio molitor (TM), Hermetia illucens (HI), and Zophobas morio (ZM) larvae, respectively, at a 5% replacement ratio. Temperature and relative humidity of the poultry house were monitored. Under heat stress conditions, the HI-fed group consistently exhibited the highest body weight, demonstrating their remarkable growth-promoting potential. TM-fed broilers also displayed commendable growth compared to the control. Insect larvae inclusion in the diet improved feed intake during early growth stages, indicating their positive influence on nutrient utilization. Regarding antioxidant stability, malondialdehyde (MDA) levels in the liver, an oxidative stress and lipid peroxidation marker, were significantly lower in the TM-fed group, suggesting reduced oxidative stress. While the specific insect-based diet did not significantly affect MDA levels in thigh and breast tissues, variations in the total phenolic content (TPC) were observed across tissues, with HI larvae significantly increasing it in the breast. However, the total antioxidant capacity (TAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) levels did not differ significantly among dietary groups in the examined tissues. Results suggest that insect-based diets enhance broiler growth and potentially reduce oxidative stress, particularly in the liver. Dietary presence of bioactive compounds may contribute to these benefits. Further research is required to fully elucidate the mechanisms underlying these findings. Insect-based diets seem to offer promise as feed additives in addressing the multifaceted challenges of oxidative stress and enhancing broiler health and resilience under heat stress conditions.
Collapse
Affiliation(s)
- Vasilopoulos Stelios
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece
| | - Giannenas Ilias
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece.
| | - Panitsidis Ioannis
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece
| | - Athanassiou Christos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446, Volos, N. Ionia, Greece
| | - Papadopoulos Elias
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece
| | - Fortomaris Paschalis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
8
|
Li M, Mao C, Li X, Jiang L, Zhang W, Li M, Liu H, Fang Y, Liu S, Yang G, Hou X. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods 2023; 12:4073. [PMID: 38002131 PMCID: PMC10670618 DOI: 10.3390/foods12224073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Edible insects are a highly nutritious source of protein and are enjoyed by people all over the world. Insects contain various other nutrients and beneficial compounds, such as lipids, vitamins and minerals, chitin, phenolic compounds, and antimicrobial peptides, which contribute to good health. The practice of insect farming is far more resource-efficient compared to traditional agriculture and animal husbandry, requiring less land, energy, and water, and resulting in a significantly lower carbon footprint. In fact, insects are 12 to 25 times more efficient than animals in converting low-protein feed into protein. When it comes to protein production per unit area, insect farming only requires about one-eighth of the land needed for beef production. Moreover, insect farming generates minimal waste, as insects can consume food and biomass that would otherwise go to waste, contributing to a circular economy that promotes resource recycling and reuse. Insects can be fed with agricultural waste, such as unused plant stems and food scraps. Additionally, the excrement produced by insects can be used as fertilizer for crops, completing the circular chain. Despite the undeniable sustainability and nutritional benefits of consuming insects, widespread acceptance of incorporating insects into our daily diets still has a long way to go. This paper provides a comprehensive overview of the nutritional value of edible insects, the development of farming and processing technologies, and the problems faced in the marketing of edible insect products and insect foods to improve the reference for how people choose edible insects.
Collapse
Affiliation(s)
- Mengjiao Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Chengjuan Mao
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Xin Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Lei Jiang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Wen Zhang
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Mengying Li
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
| | - Huixue Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (M.L.); (Y.F.); (S.L.); (G.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (C.M.); (X.L.); (L.J.); (W.Z.); (M.L.)
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
9
|
Ferrazzano GF, D’Ambrosio F, Caruso S, Gatto R, Caruso S. Bioactive Peptides Derived from Edible Insects: Effects on Human Health and Possible Applications in Dentistry. Nutrients 2023; 15:4611. [PMID: 37960264 PMCID: PMC10650930 DOI: 10.3390/nu15214611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Novel foods, including edible insects, are emerging because of their nutritional characteristics and low environmental impacts and could represent a valid alternative source of food in a more sustainable way. Edible insects have been shown to have beneficial effects on human health. Insect-derived bioactive peptides exert antihypertensive, antioxidant, anti-inflammatory, and antimicrobial properties and have protective effects against common metabolic conditions. In this review, the roles of edible insects in human health are reported, and the possible applications of these peptides in clinical practice are discussed. A special mention is given to the role of antimicrobial peptides and their potential applications in controlling infections in orthodontic procedures. In this context, insects' antimicrobial peptides might represent a potential tool to face the onset of infective endocarditis, with a low chance to develop resistances, and could be manipulated and optimized to replace common antibiotics used in clinical practice so far. Although some safety concerns must be taken into consideration, and the isolation and production of insect-derived proteins are far from easy, edible insects represent an interesting source of peptides, with beneficial effects that may be, in the future, integrated into clinical and orthodontic practice.
Collapse
Affiliation(s)
- Gianmaria Fabrizio Ferrazzano
- UNESCO Chair in Health Education and Sustainable Development, Paediatric Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Francesca D’Ambrosio
- Department of Laboratory and Infectious Diseases Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Caruso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| | - Roberto Gatto
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| | - Silvia Caruso
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (R.G.); (S.C.)
| |
Collapse
|