1
|
Arishi RA, Cheema AS, Lai CT, Payne MS, Geddes DT, Stinson LF. Development of the breastfed infant oral microbiome over the first two years of life in the BLOSOM Cohort. Front Cell Infect Microbiol 2025; 15:1534750. [PMID: 40302925 PMCID: PMC12037575 DOI: 10.3389/fcimb.2025.1534750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Acquisition and development of the oral microbiome are dynamic processes that occur over early life. This study aimed to characterize the temporal development of the oral microbiome of predominantly breastfed infants during the first two years of life. Methods Infant oral samples (n=667) were collected at ten time points from the first week to year two of life from 84 infants. Bacterial DNA profiles were analyzed using full-length 16S rRNA gene sequencing. Results The oral microbiome was dominated by Streptococcus mitis, Gemella haemolysans, and Rothia mucilaginosa. Bacterial richness decreased from 1 to 2 months (P = 0.043) and increased from 12 to 24 months (P = 0.038). Shannon diversity increased from 1 week to 1 month and again from 6 to 9 months and 9 to 12 months (all P ≤ 0.04). The composition of the infant oral microbiome was associated with multiple factors, including early pacifier use, intrapartum antibiotic prophylaxis, maternal allergy, pre-pregnancy body mass index, siblings, delivery mode, maternal age, pets at home, and birth season (all P < 0.01). Introduction of solid foods was a significant milestone in oral microbiome development, triggering an increase in bacterial diversity (richness P = 0.0004; Shannon diversity P = 0.0007), a shift in the abundance of seven species, and a change in beta diversity (P = 0.001). Conclusion These findings underscore the importance of multiple factors, particularly the introduction of solid foods, in shaping the oral microbiome of breastfed infants during early life.
Collapse
Affiliation(s)
- Roaa A. Arishi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
- Ministry of Education, Riyadh, Saudi Arabia
| | - Ali S. Cheema
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Ching T. Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, WA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| |
Collapse
|
2
|
Zhu J, He M, Li S, Lei Y, Xiang X, Guo Z, Wang Q. Shaping oral and intestinal microbiota and the immune system during the first 1,000 days of life. Front Pediatr 2025; 13:1471743. [PMID: 39906673 PMCID: PMC11790674 DOI: 10.3389/fped.2025.1471743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
The first 1, 000 days of life, from the fetal stage of a woman's pregnancy to 2 years of age after the baby is born, is a critical period for microbial colonization of the body and development of the immune system. The immune system and microbiota exhibit great plasticity at this stage and play a crucial role in subsequent development and future health. Two-way communication and interaction between immune system and microbiota is helpful to maintain human microecological balance and immune homeostasis. Currently, there is a growing interest in the important role of the microbiota in the newborn, and it is believed that the absence or dysbiosis of human commensal microbiota early in life can have lasting health consequences. Thus, this paper summarizes research advances in the establishment of the oral and intestinal microbiome and immune system in early life, emphasizing the substantial impact of microbiota diversity in the prenatal and early postnatal periods, and summarizes that maternal microbes, mode of delivery, feeding practices, antibiotics, probiotics, and the environment shape the oral and intestinal microbiota of infants in the first 1, 000 days of life and their association with the immune system.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Peterson BW, Tjakkes GH, Renkema AM, Manton DJ, Ren Y. The oral microbiota and periodontal health in orthodontic patients. Periodontol 2000 2024. [PMID: 39031969 DOI: 10.1111/prd.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
The oral microbiota develops within the first 2 years of childhood and becomes distinct from the parents by 4 years-of-age. The oral microbiota plays an important role in the overall health/symbiosis of the individual. Deviations from the state of symbiosis leads to dysbiosis and an increased risk of pathogenicity. Deviations can occur not only from daily life activities but also from orthodontic interventions. Orthodontic appliances are formed from a variety of biomaterials. Once inserted, they serve as a breeding ground for microbial attachment, not only from new surface areas and crevices but also from material physicochemical interactions different than in the symbiotic state. Individuals undergoing orthodontic treatment show, compared with untreated people, qualitative and quantitative differences in activity within the oral microbiota, induced by increased retention of supra- and subgingival microbial plaque throughout the treatment period. These changes are at the root of the main undesirable effects, such as gingivitis, white spot lesions (WSL), and more severe caries lesions. Notably, the oral microbiota profile in the first weeks of orthodontic intervention might be a valuable indicator to predict and identify higher-risk individuals with respect to periodontal health and caries risk within an otherwise healthy population. Antimicrobial coatings have been used to dissuade microbes from adhering to the biomaterial; however, they disrupt the host microbiota, and several bacterial strains have become resistant. Smart biomaterials that can reduce the antimicrobial load preventing microbial adhesion to orthodontic appliances have shown promising results, but their complexity has kept many solutions from reaching the clinic. 3D printing technology provides opportunities for complex chemical syntheses to be performed uniformly, reducing the cost of producing smart biomaterials giving hope that they may reach the clinic in the near future. The purpose of this review is to emphasize the importance of the oral microbiota during orthodontic therapy and to use innovative technologies to better maintain its healthy balance during surgical procedures.
Collapse
Affiliation(s)
- Brandon W Peterson
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Geerten-Has Tjakkes
- Centre for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne-Marie Renkema
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David J Manton
- Centre for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yijin Ren
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
5
|
Arishi RA, Lai CT, Geddes DT, Stinson LF. Impact of breastfeeding and other early-life factors on the development of the oral microbiome. Front Microbiol 2023; 14:1236601. [PMID: 37744908 PMCID: PMC10513450 DOI: 10.3389/fmicb.2023.1236601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
The oral cavity is home to the second most diverse microbiome in the human body. This community contributes to both oral and systemic health. Acquisition and development of the oral microbiome is a dynamic process that occurs over early life; however, data regarding longitudinal assembly of the infant oral microbiome is scarce. While numerous factors have been associated with the composition of the infant oral microbiome, early feeding practices (breastfeeding and the introduction of solids) appear to be the strongest determinants of the infant oral microbiome. In the present review, we draw together data on the maternal, infant, and environmental factors linked to the composition of the infant oral microbiome, with a focus on early nutrition. Given evidence that breastfeeding powerfully shapes the infant oral microbiome, the review explores potential mechanisms through which human milk components, including microbes, metabolites, oligosaccharides, and antimicrobial proteins, may interact with and shape the infant oral microbiome. Infancy is a unique period for the oral microbiome. By enhancing our understanding of oral microbiome assembly in early life, we may better support both oral and systemic health throughout the lifespan.
Collapse
Affiliation(s)
- Roaa A. Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Ministry of Health, Riyadh, Saudi Arabia
| | - Ching T. Lai
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Zhang Y, Wu YP, Feng V, Cao GZ, Feng XP, Chen X. Microbiota of preterm infant develops over time along with the first teeth eruption. Front Microbiol 2022; 13:1049021. [PMID: 36620010 PMCID: PMC9813514 DOI: 10.3389/fmicb.2022.1049021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The temporal growth of the infant microbiome in the early years of life influences short- and long-term infant health. The aim of this longitudinal study was to investigate bacterial dynamics in the microbiome of preterm infants during tooth eruption. Methods Saliva samples from normally delivered (n = 24) and preterm infants (n = 31) were collected 30 days after birth and after the eruption of two primary mandibular incisors. Based on Illumina MiSeq Sequencing of the 16S rRNA gene, the dynamic microbial changes of newborns at two-time points were investigated. Meanwhile, the Human Oral Microbiome Database was adopted for assigning taxonomy. Results Using alpha and beta diversity analyses, different shift patterns of microbiome structures in preterm and healthy participants and bacterial diversity over time were observed. The relative abundance and shifts trend, along with the two lower primary central incisors eruption, of core oral flora varies in full-term and preterm groups, including Gemella spp., Rothia mucilaginosa, Veillonella atypica, etc. Several microorganisms colonize later in the oral microbiome development of premature babies, such as Gemella spp. In addition to teeth eruption, the growth of the saliva microbiome in preterm infants could be influenced by breastfeeding durations and birth weight. Conclusion This study provided insights into how the oral microbiota changes during tooth eruption in preterm infants and how the colonization of the oral cavity with bacteria in preterm infants differs significantly from that in full-term infants.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Chen
- *Correspondence: Xi Chen, ; Xi-Ping Feng,
| |
Collapse
|
7
|
Griffith A, Mateen A, Markowitz K, Singer SR, Cugini C, Shimizu E, Wiedman GR, Kumar V. Alternative Antibiotics in Dentistry: Antimicrobial Peptides. Pharmaceutics 2022; 14:1679. [PMID: 36015305 PMCID: PMC9412702 DOI: 10.3390/pharmaceutics14081679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
The rise of antibiotic resistant bacteria due to overuse and misuse of antibiotics in medicine and dentistry is a growing concern. New approaches are needed to combat antibiotic resistant (AR) bacterial infections. There are a number of methods available and in development to address AR infections. Dentists conventionally use chemicals such as chlorohexidine and calcium hydroxide to kill oral bacteria, with many groups recently developing more biocompatible antimicrobial peptides (AMPs) for use in the oral cavity. AMPs are promising candidates in the treatment of (oral) infections. Also known as host defense peptides, AMPs have been isolated from animals across all kingdoms of life and play an integral role in the innate immunity of both prokaryotic and eukaryotic organisms by responding to pathogens. Despite progress over the last four decades, there are only a few AMPs approved for clinical use. This review summarizes an Introduction to Oral Microbiome and Oral Infections, Traditional Antibiotics and Alternatives & Antimicrobial Peptides. There is a focus on cationic AMP characteristics and mechanisms of actions, and an overview of animal-derived natural and synthetic AMPs, as well as observed microbial resistance.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Akilah Mateen
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Kenneth Markowitz
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Steven R. Singer
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Department of Biology, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|