1
|
Nulmans I, Laga CA, Salvi NS, Desmet L, Lequeue S, Neuckermans J, Schwaneberg U, De Kock J. A robust high-throughput screening system to assess bacterial tyrosine ammonia lyase activity in the context of tyrosine inherited metabolic disorders. Sci Rep 2024; 14:22175. [PMID: 39333684 PMCID: PMC11436776 DOI: 10.1038/s41598-024-72360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Inborn errors of tyrosine metabolism result in patient's inability to degrade tyrosine. Current treatment consists of a phenylalanine and tyrosine restricted diet and nitisinone, causing a block in the tyrosine degradation pathway. However, tyrosine levels will increase, leading to acquired hypertyrosinemia, implying the need for an add-on treatment. Tyrosine ammonia lyases (TAL) can provide such an add-on treatment as they catalyze the deamination of tyrosine into p-coumaric acid and ammonia. In this study, we developed a robust high-throughput screening (HTS) assay to assess the capacity of bacterial TAL enzymes to decrease excessive tyrosine. The assay is based on the spectrophotometric quantification of p-coumaric acid after conversion of tyrosine by bacterial TAL. As a benchmark, TAL from Flavobacterium johnsoniae (FjTAL) was used to optimize the assay. Optimal growth conditions for high-level protein expression were determined by incubating transformed Escherichia coli BL21 (DE3) cells at different temperatures during various incubation times. Subsequently, assay temperature and pH were optimized followed by testing different ratios of tyrosine assay mixes to bacterial lysate. Finally, assay robustness and functionality were evaluated. Optimal FjTAL expression was obtained after incubation for 24 h at 22 °C. Ideal assay conditions consist of a 80/20 ratio of 1 mM tyrosine assay mix to FjTAL lysate performed at pH 9.2 and 37 °C. The robustness test showed Z' values > 0.4 and signal window values > 2 without edge or drift effects. As proof-of-principle, we successfully determined the catalytic activity of two other bacterial TAL enzymes RsTAL (5.718.10-3 ± 0.21.10-3) and SeSAM8 (4.658.10-3 ± 0.37.10-3). A robust, simple and reliable HTS assay was thus developed to evaluate the tyrosine degradation capacity of bacterial TAL enzymes.
Collapse
Affiliation(s)
- Ine Nulmans
- Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium.
| | - Camille Annie Laga
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Nina Stefanie Salvi
- Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Liesbeth Desmet
- Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Sien Lequeue
- Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Jessie Neuckermans
- Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium
| | - Ulrich Schwaneberg
- Lehrstuhl Für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Joery De Kock
- Liver Therapy & Evolution Team, In Vitro Toxicology and Dermato-Cosmetology (IVTD) Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium
| |
Collapse
|
2
|
Ade C, Marcelino TF, Dulchavsky M, Wu K, Bardwell JCA, Städler B. Microreactor equipped with naturally acid-resistant histidine ammonia lyase from an extremophile. MATERIALS ADVANCES 2022; 3:3649-3662. [PMID: 36238657 PMCID: PMC9555226 DOI: 10.1039/d2ma00051b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extremophile enzymes are useful in biotechnology and biomedicine due to their abilities to withstand harsh environments. The abilities of histidine ammonia lyases from different extremophiles to preserve their catalytic activities after exposure to acid were assessed. Thermoplasma acidophilum histidine ammonia lyase was identified as an enzyme with a promising catalytic profile following acid treatment. The fusion of this enzyme with the maltose-binding protein or co-incubation with the chaperone HdeA further helped Thermoplasma acidophilum histidine ammonia lyase to withstand acid treatments down to pH 2.8. The assembly of a microreactor by encapsulation of MBP-Thermoplasma acidophilum histidine ammonia lyase into a photocrosslinked poly(vinyl alcohol) hydrogel allowed the enzyme to recover over 50% of its enzymatic activity following exposure to simulated gastric and intestinal fluids. Our results show that using engineered proteins obtained from extremophiles in combination with polymer-based encapsulation can advance the oral formulations of biologicals.
Collapse
Affiliation(s)
- Carina Ade
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Thaís F Marcelino
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, China
| | - Mark Dulchavsky
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin Wu
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
3
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|