1
|
Purohit S, Rana R, Tyagi A, Bahuguna A, Oswal P, Anshika, Kumar A. Organosulphur and organoselenium compounds as ligands for catalytic systems in the Sonogashira coupling. Org Biomol Chem 2024; 22:6215-6245. [PMID: 38873754 DOI: 10.1039/d4ob00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sonogashira coupling is a reaction of aryl/vinyl halides with terminal alkynes. It is used for the synthesis of conjugated enynes. Generally, copper (Cu) is required as a mediator for this reaction. It requires a long reaction time, high catalyst loading, or expensive ligands. Recently, homogeneous, heterogeneous, and nanocatalysts have been developed using organosulphur and organoselenium compounds as building blocks. Preformed complexes of metals with organosulphur and organoselenium ligands are used for homogeneous catalysis. Heterogeneous catalytic systems have also been developed using Cu, Pd, and Ni as metals. The nanocatalytic systems (synthesized using such ligands) include copper selenides and stabilized palladium(0) nanospecies. This article aims to cover the developments in the field of the processes and techniques used so far to generate catalytically relevant organic ligands having sulphur or selenium donor sites, the utility of such ligands in the syntheses of homogeneous, heterogeneous, and nanocatalytic systems, and critical analysis of their application in the catalysis of this coupling reaction. The results of catalysis are analyzed in terms of the effects of the S/Se donor, halogen atom of aryl halide, the effect of the presence/absence of electron-withdrawing or electron-donating groups or substituents on the aromatic ring of haloarenes/substituted phenylacetylenes, as well as the position (ortho or para) of the substitution. Substrate scope is discussed for all the kinds of catalysis. The supremacy of heterogeneous and nanocatalytic systems indicates promising future prospects.
Collapse
Affiliation(s)
- Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Ramakshi Rana
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Preeti Oswal
- Department of Chemistry, Texas A&M University, College Station, 77842-3012, USA
| | - Anshika
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| |
Collapse
|
2
|
Ferdousian R, Behbahani FK. Organoselenium compounds. Synthesis, application, and biological activity. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2119237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Upadhyay A, Batabyal M, Kanika, Kumar S. Organoseleniums: Generated and Exploited in Oxidative Reactions. CHEM LETT 2020. [DOI: 10.1246/cl.200015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Kanika
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| |
Collapse
|
4
|
Rathore V, Jose C, Kumar S. Organoselenium small molecules as catalysts for the oxidative functionalization of organic molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj00964g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This perspective highlights the critical analysis of the challenges, in the past decade, which led to the development of organoselenium compounds and their use as versatile catalysts in organic synthesis towards the oxidation of olefins and C–H bonds. Furthermore, the emphasis here differs from previous reviews of the field by classifying the various types of catalyses and the diverse strategies.
Collapse
Affiliation(s)
- Vandana Rathore
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Cavya Jose
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| | - Sangit Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal
- India
| |
Collapse
|
5
|
Li X, Gan B, Xie T, Yang P, Xie Y. An Efficient One-Pot Synthesis of 2-Amino-1,3,4-Selenadiazoles. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14558161990884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient one-pot synthesis of 2-amino-1,3,4-selenadiazoles from isoselenocyanates, hydrazine hydrate and aromatic aldehydes has been developed. This approach provides a simple, mild and facile way to construct various derivatives in moderate to good yields (57–82%). A plausible mechanism is proposed for the formation of the target products.
Collapse
Affiliation(s)
- Xue Li
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Bin Gan
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Tinghui Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Ping Yang
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
- Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
6
|
Developments in Synthetic Application of Selenium(IV) Oxide and Organoselenium Compounds as Oxygen Donors and Oxygen-Transfer Agents. Molecules 2015; 20:10205-43. [PMID: 26046320 PMCID: PMC6272618 DOI: 10.3390/molecules200610205] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/23/2015] [Accepted: 06/01/2015] [Indexed: 11/16/2022] Open
Abstract
A variety of selenium compounds were proven to be useful reagents and catalysts for organic synthesis over the past several decades. The most interesting aspect, which emerged in recent years, concerns application of hydroperoxide/selenium(IV) oxide and hydroperoxide/organoselenium catalyst systems, as "green reagents" for the oxidation of different organic functional groups. The topic of oxidations catalyzed by organoselenium derivatives has rapidly expanded in the last fifteen years This paper is devoted to the synthetic applications of the oxidation reactions mediated by selenium compounds such as selenium(IV) oxide, areneseleninic acids, their anhydrides, selenides, diselenides, benzisoselenazol-3(2H)-ones and other less often used other organoselenium compounds. All these compounds have been successfully applied for various oxidations useful in practical organic syntheses such as epoxidation, 1,2-dihydroxylation, and α-oxyfunctionalization of alkenes, as well as for ring contraction of cycloalkanones, conversion of halomethyl, hydroxymethyl or active methylene groups into formyl groups, oxidation of carbonyl compounds into carboxylic acids and/or lactones, sulfides into sulfoxides, and secondary amines into nitrones and regeneration of parent carbonyl compounds from their azomethine derivatives. Other reactions such as dehydrogenation and aromatization, active carbon-carbon bond cleavage, oxidative amidation, bromolactonization and oxidation of bromide for subsequent reactions with alkenes are also successfully mediated by selenium (IV) oxide or organoselenium compounds. The oxidation mechanisms of ionic or free radical character depending on the substrate and oxidant are discussed. Coverage of the literature up to early 2015 is provided. Links have been made to reviews that summarize earlier literature and to the methods of preparation of organoselenium reagents and catalysts.
Collapse
|
7
|
Vishwanatha TM, Narendra N, Chattopadhyay B, Mukherjee M, Sureshbabu VV. Synthesis of Selenoxo Peptides and Oligoselenoxo Peptides Employing LiAlHSeH. J Org Chem 2012; 77:2689-702. [DOI: 10.1021/jo2024703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- T. M. Vishwanatha
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| | - N. Narendra
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| | - Basab Chattopadhyay
- Department
of Solid State Physics, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India
| | - Monika Mukherjee
- Department
of Solid State Physics, Indian Association for the Cultivation of Science,
Jadavpur, Kolkata 700032, India
| | - Vommina V. Sureshbabu
- Peptide Research Laboratory,
Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore
560001, India
| |
Collapse
|
8
|
Hua G, Li Y, Fuller AL, Slawin AMZ, Woollins JD. Facile Synthesis and Structure of Novel 2,5-Disubstituted 1,3,4-Selenadiazoles. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Ramoutar RR, Brumaghim JL. Effects of inorganic selenium compounds on oxidative DNA damage. J Inorg Biochem 2007; 101:1028-35. [PMID: 17531322 DOI: 10.1016/j.jinorgbio.2007.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/29/2007] [Accepted: 03/30/2007] [Indexed: 11/26/2022]
Abstract
Exposure of Escherichia coli or mammalian cells to H2O2 results in cell death due to iron-mediated DNA damage. Since selenium compounds have been examined for their ability to act as antioxidants to neutralize radical species, and inorganic selenium compounds are used to supplement protein mixes, infant formula, and animal feed, determining the effect of these compounds on DNA damage under conditions of oxidative stress is crucial. In the presence of Fe(II) and H2O2, the effects of Na2SeO4, Na2SeO3, SeO2 (0.5-5000 microM), and Na2Se (0.5-200 microM) on DNA damage were quantified using gel electrophoresis. Both Na2SeO4 and Na2Se have no effect on DNA damage, whereas SeO2 inhibits DNA damage and Na2SeO3 shows antioxidant or pro-oxidant activity depending on H2O2 concentration. Similar electrophoresis experiments with [Fe(EDTA)](2-) (400 microM) and Na2SeO3 or SeO2 show that metal coordination by the selenium compound is required for antioxidant activity. In light of these results, Na2SeO4 may be safer than Na2SeO3 for nutritional supplements.
Collapse
Affiliation(s)
- Ria R Ramoutar
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
10
|
Młochowski J, Brząszcz M, Giurg M, Palus J, Wójtowicz H. Selenium‐Promoted Oxidation of Organic Compounds: Reactions and Mechanisms. European J Org Chem 2003. [DOI: 10.1002/ejoc.200300230] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jacek Młochowski
- Institute of Organic Chemistry, Biochemistry and Biotechnology, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50−370 Wrocław, Poland, Fax: (internat.) +48‐(0)71‐3284064
| | - Monika Brząszcz
- Institute of Organic Chemistry, Biochemistry and Biotechnology, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50−370 Wrocław, Poland, Fax: (internat.) +48‐(0)71‐3284064
| | - Mirosław Giurg
- Institute of Organic Chemistry, Biochemistry and Biotechnology, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50−370 Wrocław, Poland, Fax: (internat.) +48‐(0)71‐3284064
| | - Jerzy Palus
- Institute of Organic Chemistry, Biochemistry and Biotechnology, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50−370 Wrocław, Poland, Fax: (internat.) +48‐(0)71‐3284064
| | - Halina Wójtowicz
- Institute of Organic Chemistry, Biochemistry and Biotechnology, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50−370 Wrocław, Poland, Fax: (internat.) +48‐(0)71‐3284064
| |
Collapse
|
11
|
Kloc K, Młochowski J, Osajda K, Syper L, Wójtowicz H. New heterocyclic selenenamides: 1,2,4-benzoselenadiazin-3(4H)-ones and 1,3,2-benzodiselenazoles. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)00684-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Selective oxidation of aromatic aldehydes to arenecarboxylic acids using ebselen-tert-butyl hydroperoxide catalytic system. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(01)00961-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|