1
|
Shah A, Sharma A, Katiyar S, Gupta A, Chaturvedi CP. Upfront Screening by Quantitative Real-Time PCR Assay Identifies NUP98::NSD1 Fusion Transcript in Indian AML Patients. Diagnostics (Basel) 2022; 12:diagnostics12123001. [PMID: 36553008 PMCID: PMC9777445 DOI: 10.3390/diagnostics12123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
NUP98::NSD1 fusion, a cryptic translocation of t(5;11)(q35;p15.5), occurs predominantly in pediatric AML, having a poor prognostic outcome. There are limited studies on the diagnosis of NUP98::NSD1 fusion in a clinical setting, and most of the data are from Western countries. No study on the detection of this translocation has been reported from the Indian subcontinent to date. One possible reason could be the lack of availability of a potential tool to detect the fusion transcript. We have developed a real-time quantitative PCR (qRT-PCR)-based assay to detect NUP98::NSD1 fusion transcript with high sensitivity and specificity. Screening 150 AML patients (38 pediatric and 112 adults) using the assay showed the presence of fusion transcript in six patients including 03 pediatric, and 03 adult patients. We observed a prevalence rate of 7.89% (3/38) and 2.67% (3/112) fusion transcript in pediatric and adult patients, respectively. Sanger sequencing further validated the occurrence of NUP98::NSD1 fusion in all six patients. Molecular characterization of these patients revealed a co-occurrence of FLT3-ITD mutation, accompanied by altered expression of the HOX and other genes associated with AML. All six patients responded poorly to induction therapy. Overall, this is the first study to show the presence of the NUP98::NSD1 fusion transcript in Indian AML patients. Further, we demonstrate that our in-house developed qRT-PCR assay can be used to screen NUP98::NSD1 fusion in clinical settings.
Collapse
Affiliation(s)
- Arunim Shah
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | - Akhilesh Sharma
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | - Shobhita Katiyar
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | - Anshul Gupta
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
- Correspondence: ; Tel.: +91-522-2495891; Fax: +91-522-2668017
| |
Collapse
|
2
|
Kerbs P, Vosberg S, Krebs S, Graf A, Blum H, Swoboda A, Batcha AMN, Mansmann U, Metzler D, Heckman CA, Herold T, Greif PA. Fusion gene detection by RNA-sequencing complements diagnostics of acute myeloid leukemia and identifies recurring NRIP1-MIR99AHG rearrangements. Haematologica 2022; 107:100-111. [PMID: 34134471 PMCID: PMC8719081 DOI: 10.3324/haematol.2021.278436] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/03/2021] [Indexed: 12/04/2022] Open
Abstract
Identification of fusion genes in clinical routine is mostly based on cytogenetics and targeted molecular genetics, such as metaphase karyotyping, fluorescence in situ hybridization and reverse-transcriptase polymerase chain reaction. However, sequencing technologies are becoming more important in clinical routine as processing time and costs per sample decrease. To evaluate the performance of fusion gene detection by RNAsequencing compared to standard diagnostic techniques, we analyzed 806 RNA-sequencing samples from patients with acute myeloid leukemia using two state-of-the-art software tools, namely Arriba and FusionCatcher. RNA-sequencing detected 90% of fusion events that were reported by routine with high evidence, while samples in which RNA-sequencing failed to detect fusion genes had overall lower and inhomogeneous sequence coverage. Based on properties of known and unknown fusion events, we developed a workflow with integrated filtering strategies for the identification of robust fusion gene candidates by RNA-sequencing. Thereby, we detected known recurrent fusion events in 26 cases that were not reported by routine and found discrepancies in evidence for known fusion events between routine and RNA-sequencing in three cases. Moreover, we identified 157 fusion genes as novel robust candidates and comparison to entries from ChimerDB or Mitelman Database showed novel recurrence of fusion genes in 14 cases. Finally, we detected the novel recurrent fusion gene NRIP1- MIR99AHG resulting from inv(21)(q11.2;q21.1) in nine patients (1.1%) and LTN1-MX1 resulting from inv(21)(q21.3;q22.3) in two patients (0.25%). We demonstrated that NRIP1-MIR99AHG results in overexpression of the 3' region of MIR99AHG and the disruption of the tricistronic miRNA cluster miR-99a/let-7c/miR-125b-2. Interestingly, upregulation of MIR99AHG and deregulation of the miRNA cluster, residing in the MIR99AHG locus, are known mechanisms of leukemogenesis in acute megakaryoblastic leukemia. Our findings demonstrate that RNA-sequencing has a strong potential to improve the systematic detection of fusion genes in clinical applications and provides a valuable tool for fusion discovery.
Collapse
Affiliation(s)
- Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich; and; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich; and; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Anja Swoboda
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Aarif M N Batcha
- Department of Medical Data Processing, Biometry and Epidemiology, LMU Munich, Munich, Germany
| | - Ulrich Mansmann
- Department of Medical Data Processing, Biometry and Epidemiology, LMU Munich, Munich, Germany
| | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich; and; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich; and; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Targeted Inhibition of the NUP98-NSD1 Fusion Oncogene in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102766. [PMID: 32993115 PMCID: PMC7600396 DOI: 10.3390/cancers12102766] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary NUP98-NSD1-positive acute myeloid leukemia (AML) frequently shows an additional mutation in Neuroblastoma rat sarcoma (NRAS). However, the synergistic effect of NUP98-NSD1 and NRASG12D in leukemic transformation remained unclear. In addition, NUP98-NSD1 positive AML patients respond poorly to chemotherapy and lack a targeted therapeutic option. Our study aimed to identify the cooperation of NUP98-NSD1 fusion and NRASG12D mutation and to develop a novel therapeutic approach for this AML. We found that NUP98-NSD1 alone can cause leukemia with long latency, and NRASG12D contributes to the aggressiveness of this AML. Additionally, we validated a novel NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of patient-derived xenograft (PDX) mice with NUP98-NSD1-positive AML. Abstract NUP98-NSD1-positive acute myeloid leukemia (AML) is a poor prognostic subgroup that is frequently diagnosed in pediatric cytogenetically normal AML. NUP98-NSD1-positive AML often carries additional mutations in genes including FLT3, NRAS, WT1, and MYC. The purpose of our study was to characterize the cooperative potential of the fusion and its associated Neuroblastoma rat sarcoma (NRAS) mutation. By constitutively expressing NUP98-NSD1 and NRASG12D in a syngeneic mouse model and using a patient-derived xenograft (PDX) model from a NUP98-NSD1-positive AML patient, we evaluated the functional role of these genes and tested a novel siRNA formulation that inhibits the oncogenic driver NUP98-NSD1. NUP98-NSD1 transformed murine bone marrow (BM) cells in vitro and induced AML in vivo. While NRASG12D expression was insufficient to transform cells alone, co-expression of NUP98-NSD1 and NRASG12D enhanced the leukemogenicity of NUP98-NSD1. We developed a NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of the PDX mice. Our study demonstrates that mutated NRAS cooperates with NUP98-NSD1 and shows that direct targeting of the fusion can be exploited as a novel treatment strategy in NUP98-NSD1-positive AML patients.
Collapse
|
4
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
5
|
Dasatinib and navitoclax act synergistically to target NUP98-NSD1 +/FLT3-ITD + acute myeloid leukemia. Leukemia 2018; 33:1360-1372. [PMID: 30568173 DOI: 10.1038/s41375-018-0327-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia (AML) with co-occurring NUP98-NSD1 and FLT3-ITD is associated with unfavorable prognosis and represents a particularly challenging treatment group. To identify novel effective therapies for this AML subtype, we screened patient cells and engineered cell models with over 300 compounds. We found that mouse hematopoietic progenitors co-expressing NUP98-NSD1 and FLT3-ITD had significantly increased sensitivity to FLT3 and MEK-inhibitors compared to cells expressing either aberration alone (P < 0.001). The cells expressing NUP98-NSD1 alone had significantly increased sensitivity to BCL2-inhibitors (P = 0.029). Furthermore, NUP98-NSD1+/FLT3-ITD+ patient cells were also very sensitive to BCL2-inhibitor navitoclax, although the highest select sensitivity was found to SRC/ABL-inhibitor dasatinib (mean IC50 = 2.2 nM). Topoisomerase inhibitor mitoxantrone was the least effective drug against NUP98-NSD1+/FLT3-ITD+ AML cells. Of the 25 significant hits, four remained significant also compared to NUP98-NSD1-/FLT3-ITD+ AML patients. We found that SRC/ABL-inhibitor dasatinib is highly synergistic with BCL2-inhibitor navitoclax in NUP98-NSD1+/FLT3-ITD+ cells. Gene expression analysis supported the potential relevance of dasatinib and navitoclax by revealing significantly higher expression of BCL2A1, FGR, and LCK in NUP98-NSD1+/FLT3-ITD+ patients compared to healthy CD34+ cells. Our data suggest that dasatinib-navitoclax combination may offer a clinically relevant treatment strategy for AML with NUP98-NSD1 and concomitant FLT3-ITD.
Collapse
|