1
|
Cockey SG, Zhang H, Hussaini M, Zhang L, Moscinski L, Yang E, Li J, Wang L, Song J. Molecular landscape and clinical outcome of SRSF2/ TET2 Co-mutated myeloid neoplasms. Leuk Lymphoma 2025; 66:469-478. [PMID: 39611281 DOI: 10.1080/10428194.2024.2432581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
The mutations in SRSF2 and TET2 genes are frequently present in various myeloid neoplasms. The potential impact of SRSF2/TET2 co-mutations on patient survival is incompletely understood. We identified 412 patients with SRSF2/TET2 co-mutations from our NextGen sequencing database of around 8000 patients and reported likely the largest cohort study. Our study demonstrated the presence of these co-mutations in a spectrum of myeloid neoplasms, which show different genetic and molecular characteristics. Most of the patients with these co-mutations had normal karyotype. Interestingly, our study provided insights into the prevalence of additional mutations such as ASXL1, RUNX1, and KRAS with this co-mutation and their potential impact on patients' prognosis. We found that ASXL1, RUNX1, and KRAS can negatively impact these patients' survival with different impacts in different morphological diagnosis categories, suggesting a complex interaction between these genes. This study underscores the need for personalized approaches in the treatment of myeloid neoplasms.
Collapse
Affiliation(s)
- Samuel G Cockey
- University of South Florida Health Morsani College of Medicine, Tampa, FL, USA
| | - Hailing Zhang
- Department of Pathology, Division of Hematopathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mohammed Hussaini
- Department of Pathology, Division of Hematopathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ling Zhang
- Department of Pathology, Division of Hematopathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Lynn Moscinski
- Department of Pathology, Division of Hematopathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ethan Yang
- Department of Hematology and Oncology, Berkey Preparatory School of Tampa, Tampa, FL, USA
| | - Julie Li
- Department of Pathology, Division of Hematopathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Le Wang
- Department of Hematology and Oncology, Guthrie Clinic Cancer Center, Guthrie Robert Packer Hospital, Sayre, PA, USA
| | - Jinming Song
- Department of Pathology, Division of Hematopathology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
2
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
4
|
Nie Y, Shao L, Zhang H, He CK, Li H, Zou J, Chen L, Ji H, Tan H, Lin Y, Ru K. Mutational landscape of chronic myelomonocytic leukemia in Chinese patients. Exp Hematol Oncol 2022; 11:32. [PMID: 35610628 PMCID: PMC9128105 DOI: 10.1186/s40164-022-00284-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is a rare and heterogeneous hematological malignancy. It has been shown that the molecular abnormalities such as ASXL1, TET2, SETBP1, and SRSF2 mutations are common in Caucasian population. METHODS We retrospectively analyzed 178 Chinese CMML patients. The targeted next generation sequencing (NGS) was used to evaluate 114 gene variations, and the prognostic factors for OS were determined by COX regression analysis. RESULTS The CMML patients showed a unique mutational spectrum, including TET2 (36.5%), NRAS (31.5%), ASXL1 (28.7%), SRSF2 (24.7%), and RUNX1 (21.9%). Of the 102 patients with clonal analysis, the ancestral events preferentially occurred in TET2 (18.5%), splicing factors (16.5%), RAS (14.0%), and ASXL1 (7.8%), and the subclonal genes were mainly ASXL1, TET2, and RAS. In addition, the secondary acute myeloid leukemia (sAML) transformed from CMML often had mutations in DNMT3A, ETV6, FLT3, and NPM1, while the primary AML (pAML) demonstrated more mutations in CEBPA, DNMT3A, FLT3, IDH1/2, NPM1, and WT1. It was of note that a series of clones were emerged during the progression from CMML to AML, including DNMT3A, FLT3, and NPM1. By univariate analysis, ASXL1 mutation, intermediate- and high-risk cytogenetic abnormality, CMML-specific prognostic scoring system (CPSS) stratifications (intermediate-2 and high group), and treatment options (best supportive care) predicted for worse OS. Multivariate analysis revealed a similar outcome. CONCLUSIONS The common mutations in Chinese CMML patients included epigenetic modifiers (TET2 and ASXL1), signaling transduction pathway components (NRAS), and splicing factor (SRSF2). The CMML patients with DNMT3A, ETV6, FLT3, and NPM1 mutations tended to progress to sAML. ASXL1 mutation and therapeutic modalities were independent prognostic factors for CMML.
Collapse
Affiliation(s)
- Yanbo Nie
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hong Zhang
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | | | - Hongyu Li
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Junyan Zou
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Long Chen
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Huaiyue Ji
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Hao Tan
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China
| | - Yani Lin
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China.
| | - Kun Ru
- Sino-US Diagnostics Lab, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, 300385, China.
| |
Collapse
|