1
|
Sperb N, Maksakova IA, Escano L, Abraham L, MacPhee L, Cabantog A, Kim D, Yu M, Krowiorz K, Im J, Grasedieck S, Pochert N, Ruess C, Rösler R, Flibotte S, Maetzig T, Calzia E, Palmqvist L, Wiese S, Fogelstrand L, Gold MR, Rouhi A, Kuchenbauer F. The proto-oncogenic miR-106a-363 cluster enhances adverse risk acute myeloid leukemia through mitochondrial activation. Leukemia 2025:10.1038/s41375-025-02558-x. [PMID: 40097604 DOI: 10.1038/s41375-025-02558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/10/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
We investigated the clinical and functional role of the miR-106a-363 cluster in adult acute myeloid leukemia (AML). LAML miRNA-Seq TCGA analyses revealed that high expression of miR-106a-363 cluster members was associated with inferior survival, and miR-106a-5p and miR-20b-5p levels were significantly elevated in patients with adverse risk AML. Overexpression of the miR-106a-363 cluster and its individual members in a murine AML model significantly accelerated leukemogenesis. Proteomics analysis of leukemic bone marrow cells from these models emphasized the deregulation of proteins involved in intracellular transport, protein complex organization and mitochondrial function, driven predominantly by miR-106a-5p. These molecular alterations suggested mitochondrial activation as a potential mechanism for the observed increase in leukemogenicity. High-resolution respirometry and STED microscopy confirmed that miR-106a-5p enhances mitochondrial respiratory activity and increases mitochondrial volume. These findings demonstrate that the miR-106a-363 cluster, and particularly miR-106a-5p, contribute to AML progression through modulation of mitochondrial function and deregulation of mitochondria-coordinated pathways.
Collapse
Affiliation(s)
- Nadine Sperb
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
| | - Irina A Maksakova
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Leo Escano
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Libin Abraham
- Department. of Microbiology and Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Liam MacPhee
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Ariene Cabantog
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Dexter Kim
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Mansen Yu
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Kathrin Krowiorz
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
| | - Junbum Im
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Sarah Grasedieck
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
| | - Nicole Pochert
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
- Department for Gynecology and Obstetrics, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Christoph Ruess
- Department of Internal Medicine III, University Hospital Ulm, Ulm, 89081, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, 89081, Germany
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, 30625, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Enrico Calzia
- Institute for Anesthesiological pathophysiology and procedure development, Ulm University Hospital, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Lars Palmqvist
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, 41345, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, 41345, Sweden
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, 89081, Germany
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, 41345, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, 41345, Sweden
| | - Michael R Gold
- Department. of Microbiology and Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Florian Kuchenbauer
- Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Zhang C, Huang T, Li L. Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:68. [PMID: 39152464 PMCID: PMC11328505 DOI: 10.1186/s13045-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tingting Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Zhang R, Wang P, Wei B, Chen L, Song X, Pan Y, Li J, Gan J, Zhang T, Yang CG. Assessment of the structure-activity relationship and antileukemic activity of diacylpyramide compounds as human ClpP agonists. Eur J Med Chem 2023; 258:115577. [PMID: 37352796 DOI: 10.1016/j.ejmech.2023.115577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Human caseinolytic protease P (ClpP) is required for the regulatory hydrolysis of mitochondrial proteins. Allosteric ClpP agonists dysfunctionally activate mitochondrial ClpP in antileukemic therapies. We previously developed ZG111, a potent ClpP agonist derived from ICG-001, inhibits the proliferation of pancreatic ductal adenocarcinoma cell lines in vitro and in vivo by degrading respiratory chain complex proteins. Herein, we studied the structure-activity relationships of ICG-001 analogs as antileukemia agents. Compound ZG36 exhibited improved stabilization effects on the thermal stability of ClpP in acute myeloid leukemia (AML) cell lines compared with the stabilization effects of ZG111, indicating a direct binding between ZG36 and ClpP. Indeed, the resolved ZG36/ClpP structural complex reveals the mode of action of ZG36 during ClpP binding. Compound ZG36 nonselectively degrades respiratory chain complexes and decreases the mitochondrial DNA, eventually leading to the collapse of mitochondrial function and leukemic cell death. Finally, ZG36 treatment inhibited 3-D cell growth in vitro and suppressed the tumorigenesis of AML cells in xenografted mice models. Collectively, we developed a new class of human ClpP agonists that can be used as potential antileukemic therapies.
Collapse
Affiliation(s)
- Ranran Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pengyu Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bingyan Wei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Chen
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yihui Pan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahui Li
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Stubbins RJ, Francis A, Kuchenbauer F, Sanford D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr Oncol 2022; 29:6245-6259. [PMID: 36135060 PMCID: PMC9498246 DOI: 10.3390/curroncol29090491] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy that most frequently develops in older adults. Overall, AML is associated with a high mortality although advancements in genetic risk stratification and new treatments are leading to improvements in outcomes for some subgroups. In this review, we discuss an individualized approach to intensive therapy with a focus on the role of recently approved novel therapies as well as the selection of post-remission therapies for patients in first remission. We discuss the management of patients with relapsed and refractory AML, including the role of targeted treatment and allogeneic stem cell transplant. Next, we review non-intensive treatment for older and unfit AML patients including the use of azacitidine and venetoclax. Finally, we discuss the integration of palliative care in the management of patients with AML.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Leukemia/BMT Program of British Columbia, Vancouver Coastal Health, BC Cancer, Vancouver, BC V5Z 1M9, Canada
- Department of Medicine, Division of Hematology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Annabel Francis
- Leukemia/BMT Program of British Columbia, Vancouver Coastal Health, Fraser Health, Vancouver, BC V5Z 1M9, Canada
| | - Florian Kuchenbauer
- Leukemia/BMT Program of British Columbia, Vancouver Coastal Health, BC Cancer, Vancouver, BC V5Z 1M9, Canada
- Department of Medicine, Division of Hematology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - David Sanford
- Leukemia/BMT Program of British Columbia, Vancouver Coastal Health, BC Cancer, Vancouver, BC V5Z 1M9, Canada
- Department of Medicine, Division of Hematology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
5
|
Liu L, Patnana PK, Xie X, Frank D, Nimmagadda SC, Su M, Zhang D, Koenig T, Rosenbauer F, Liebmann M, Klotz L, Xu W, Vorwerk J, Neumann F, Hüve J, Unger A, Okun JG, Opalka B, Khandanpour C. GFI1B acts as a metabolic regulator in hematopoiesis and acute myeloid leukemia. Leukemia 2022; 36:2196-2207. [PMID: 35804097 PMCID: PMC9417998 DOI: 10.1038/s41375-022-01635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Recent studies highlighted the role of transcription factors in metabolic regulation during hematopoiesis and leukemia development. GFI1B is a transcriptional repressor that plays a critical role in hematopoiesis, and its expression is negatively related to the prognosis of acute myeloid leukemia (AML) patients. We earlier reported a change in the metabolic state of hematopoietic stem cells upon Gfi1b deletion. Here we explored the role of Gfi1b in metabolism reprogramming during hematopoiesis and leukemogenesis. We demonstrated that Gfi1b deletion remarkably activated mitochondrial respiration and altered energy metabolism dependence toward oxidative phosphorylation (OXPHOS). Mitochondrial substrate dependency was shifted from glucose to fatty acids upon Gfi1b deletion via upregulating fatty acid oxidation (FAO). On a molecular level, Gfi1b epigenetically regulated multiple FAO-related genes. Moreover, we observed that metabolic phenotypes evolved as cells progressed from preleukemia to leukemia, and the correlation between Gfi1b expression level and metabolic phenotype was affected by genetic variations in AML cells. FAO or OXPHOS inhibition significantly impeded leukemia progression of Gfi1b-KO MLL/AF9 cells. Finally, we showed that Gfi1b-deficient AML cells were more sensitive to metformin as well as drugs implicated in OXPHOS and FAO inhibition, opening new potential therapeutic strategies.
Collapse
Affiliation(s)
- Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany.,Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany.,Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Minhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300052, Tianjin, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Thorsten Koenig
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Muenster, 48149, Muenster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Muenster, 48149, Muenster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149, Muenster, Germany
| | - Wendan Xu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Jan Vorwerk
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Felix Neumann
- Fluorescence Microscopy Facility Muenster (FM)2, Institute of Medical Physics and Biophysics, University of Muenster, 48149, Muenster, Germany.,evorion biotechnologies GmbH, 48149, Muenster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Muenster (FM)2, Institute of Medical Physics and Biophysics, University of Muenster, 48149, Muenster, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Muenster, 48149, Muenster, Germany
| | - Jürgen Günther Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Dietmar-Hopp-Metabolic Center, 69120, Heidelberg, Germany
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany. .,Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Luebeck, 23538, Luebeck, Germany.
| |
Collapse
|
6
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
7
|
Differentiation therapy for myeloid malignancies: beyond cytotoxicity. Blood Cancer J 2021; 11:193. [PMID: 34864823 PMCID: PMC8643352 DOI: 10.1038/s41408-021-00584-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Blocked cellular differentiation is a central pathologic feature of the myeloid malignancies, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Treatment regimens promoting differentiation have resulted in incredible cure rates in certain AML subtypes, such as acute promyelocytic leukemia. Over the past several years, we have seen many new therapies for MDS/AML enter clinical practice, including epigenetic therapies (e.g., 5-azacitidine), isocitrate dehydrogenase (IDH) inhibitors, fms-like kinase 3 (FLT3) inhibitors, and lenalidomide for deletion 5q (del5q) MDS. Despite not being developed with the intent of manipulating differentiation, induction of differentiation is a major mechanism by which several of these novel agents function. In this review, we examine the new therapeutic landscape for these diseases, focusing on the role of hematopoietic differentiation and the impact of inflammation and aging. We review how current therapies in MDS/AML promote differentiation as a part of their therapeutic effect, and the cellular mechanisms by which this occurs. We then outline potential novel avenues to achieve differentiation in the myeloid malignancies for therapeutic purposes. This emerging body of knowledge about the importance of relieving differentiation blockade with anti-neoplastic therapies is important to understand how current novel agents function and may open avenues to developing new treatments that explicitly target cellular differentiation. Moving beyond cytotoxic agents has the potential to open new and unexpected avenues in the treatment of myeloid malignancies, hopefully providing more efficacy with reduced toxicity.
Collapse
|