1
|
Tosic N, Tomic Vujovic K, Vukovic V, Kotur N, Stankovic B, Marjanovic I, Antic D, Sarac S, Bibic T, Ivanovic J, Zukic B, Karan-Djurasevic T. High Expression Levels of the Long Non-Coding RNAs Lnc-IRF2-3 and Lnc-KIAA1755-4 Are Markers of Poor Prognosis in Chronic Lymphocytic Leukemia. Int J Mol Sci 2025; 26:1153. [PMID: 39940921 PMCID: PMC11817519 DOI: 10.3390/ijms26031153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play complex roles at multiple levels of gene regulation, thus modulating key cellular processes involved in the pathogenesis and progression of cancer. Aberrant expression of lncRNAs has been reported in various malignancies, including chronic lymphocytic leukemia (CLL). We investigated the expression of lnc-IRF2-3 and lnc-KIAA1755-4 in peripheral blood mononuclear cells of 112 previously untreated CLL patients by quantitative reverse-transcriptase polymerase chain reaction. Both lncRNAs were found to be overexpressed in CLL samples in comparison to healthy controls, and their high levels were associated with adverse clinico-biological characteristics of patients at diagnosis. High lnc-IRF2-3 expression was associated with high leukocyte and lymphocyte counts, high β2-microglobulin, advanced Binet stage, unfavorable cytogenetics, CD38-positivity and IGHV-unmutated status. Regarding lnc-KIAA1755-4, its high expression was associated with high leukocyte count, lymphocyte count, β2-microglobulin, lactate dehydrogenase and low hemoglobin, as well as with IGHV-unmutated status. In addition, we observed shorter time to first treatment and overall survival of patients expressing high levels of both lncRNAs in comparison to low-expressing patients. In summary, our study showed that high lnc-IRF2-3 and lnc-KIAA1755-4 expression at diagnosis predicts poor survival in CLL. The mechanisms of their upregulation, as well as their specific targets in CLL cells, remain to be elucidated.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- RNA, Long Noncoding/genetics
- Male
- Female
- Prognosis
- Middle Aged
- Aged
- Biomarkers, Tumor/genetics
- Aged, 80 and over
- Adult
- Gene Expression Regulation, Leukemic
- Leukocytes, Mononuclear/metabolism
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Kristina Tomic Vujovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Vojin Vukovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nikola Kotur
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Biljana Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Darko Antic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sofija Sarac
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Tamara Bibic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Jelena Ivanovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Branka Zukic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Teodora Karan-Djurasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| |
Collapse
|
2
|
Rossi S, Tatangelo V, Dichiara M, Butini S, Gemma S, Brogi S, Pasquini S, Cappello M, Vincenzi F, Varani K, Lopresti L, Malchiodi M, Carrara C, Gozzetti A, Bocchia M, Marotta G, Patrussi L, Carullo G, Baldari CT, Campiani G. A novel potent class I HDAC inhibitor reverses the STAT4/p66Shc apoptotic defect in B cells from chronic lymphocytic leukemia patients. Biomed Pharmacother 2024; 174:116537. [PMID: 38579402 DOI: 10.1016/j.biopha.2024.116537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Apoptosis/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
- Src Homology 2 Domain-Containing, Transforming Protein 1/genetics
- STAT4 Transcription Factor/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- Histone Deacetylase 1/metabolism
- Histone Deacetylase 1/antagonists & inhibitors
- Benzamides/pharmacology
- Male
- Aged
- Female
- Middle Aged
Collapse
Affiliation(s)
- Sara Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Vanessa Tatangelo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Maria Dichiara
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno, Pisa 56126, Italy
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Ludovica Lopresti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Margherita Malchiodi
- Haematology Unit, Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Chiara Carrara
- Haematology Unit, Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Alessandro Gozzetti
- Haematology Unit, Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Monica Bocchia
- Haematology Unit, Department of Medical Sciences, Surgery and Neuroscience, University of Siena, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Policlinico "Santa Maria alle Scotte", Viale Bracci, Siena 53100, Italy
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy.
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| |
Collapse
|