1
|
Fedorov K, Kong L, Wang C, Boczkaj G. High-performance activation of ozone by sonocavitation for BTEX degradation in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121343. [PMID: 38843727 DOI: 10.1016/j.jenvman.2024.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
This work presents a novel advanced oxidation process (AOP) for degradation of emerging organic pollutants - benzene, toluene, ethylbenzene and xylenes (BTEXs) in water. A comparative study was performed for sonocavitation assisted ozonation under 40-120 kHz and 80-200 kHz dual frequency ultrasounds (DFUS). Based on the obtained results, the combination of 40-120 kHz i.e., low-frequency US (LFDUS) with O3 exhibited excellent oxidation capacity degrading 99.37-99.69% of BTEXs in 40 min, while 86.09-91.76% of BTEX degradation was achieved after 60 min in 80-200 kHz i.e., high-frequency US (HFDUS) combined with O3. The synergistic indexes determined using degradation rate constants were found as 7.86 and 2.9 for LFDUS/O3 and HFDUS/O3 processes, respectively. The higher extend of BTEX degradation in both processes was observed at pH 6.5 and 10. Among the reactive oxygen species (ROSs), hydroxyl radicals (HO•) were found predominant according to scavenging tests, singlet oxygen also importantly contributed in degradation, while O2•- radicals had a minor contribution. Sulfate (SO42-) ions demonstrated higher inhibitory effect compared to chloride (Cl-) and carbonate (CO32-) ions in both processes. Degradation pathways of BTEX was proposed based on the intermediates identified using GC-MS technique.
Collapse
Affiliation(s)
- Kirill Fedorov
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk, Poland
| | - Lingshuai Kong
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk, Poland; Gdansk University of Technology, EcoTech Center, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| |
Collapse
|
2
|
Wang Y, Yu G. Challenges and pitfalls in the investigation of the catalytic ozonation mechanism: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129157. [PMID: 35605501 DOI: 10.1016/j.jhazmat.2022.129157] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Catalytic ozonation is a promising technology for pollutant abatement in water and wastewater treatment. However, there are many controversies and contradictions regarding the mechanisms of catalytic ozonation in literature, which has seriously confounded the development of the technology towards industrial applications. Herein, a critical review of literature is conducted to reveal possible underlying causes of the controversies and contradictions, and several common pitfalls in the experimental design and data interpretation are identified, e.g., the fundamentally flawed quenching method popularly used for evaluating the role of reactive oxygen species for pollutant abatement in catalytic ozonation and the neglect of monitoring ozone transfer doses in lab-scale experiments. Based on the identified pitfalls, several measures are suggested to improve the experimental design and data interpretation of catalytic ozonation studies. In addition, recent advances in mechanistic understanding of catalytic ozonation by principle-based modelling approaches are described. Finally, additional works that are needed to shrink the gap between academic research and practical applications and the prospect of catalytic ozonation in future water and wastewater treatment systems are analyzed.
Collapse
Affiliation(s)
- Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China
| |
Collapse
|
3
|
Cai C, Duan X, Xie X, Kang S, Liao C, Dong J, Liu Y, Xiang S, Dionysiou DD. Efficient degradation of clofibric acid by heterogeneous catalytic ozonation using CoFe 2O 4 catalyst in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124604. [PMID: 33277078 DOI: 10.1016/j.jhazmat.2020.124604] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
CoFe2O4 (Cobalt ferrite, CF) nanoparticles were prepared, well characterized and applied as efficient solid catalyst in catalytic ozonation, named CF/O3 process, for the removal of emerging organic contaminants (EOCs). The degradation and mineralization of clofibric acid (CA) in CF/O3 process were dramatically enhanced in comparison with those under the O3 system. Surface hydroxyl groups (HGs) were considered as an important factor for ozone decomposition and the reactive oxygen species (ROS) on the catalyst surface were mainly responsible for CA elimination. The contribution and formation of ROS, including hydroxyl radicals (•OH), especially superoxide radicals (O2•-), singlet oxygen (1O2), and hydrogen peroxide (H2O2) were evaluated, and a rational mechanism was elucidated accordingly. Probable degradation pathway of CA was proposed according to the organic intermediates identified. The acute toxicity of the treated solution increased during the first 15 min and then declined rapidly and nearly disappeared as the reaction proceeded. In addition, acceptable catalytic performance of CF/O3 can be obtained for the treatment of other EOCs and the treatment of natural surface water spiked with CA. This work presents an efficient and promising catalytic ozonation technique for the elimination of EOCs in complex water matrices.
Collapse
Affiliation(s)
- Chun Cai
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China; Environmental Engineering and Science Program, University of Cincinnati, OH 45221-0071, United States
| | - Xiaodi Duan
- Environmental Engineering and Science Program, University of Cincinnati, OH 45221-0071, United States
| | - Xianjun Xie
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Shuping Kang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Chanjuan Liao
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiaming Dong
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Yangfan Liu
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Shaofeng Xiang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan 430074, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, OH 45221-0071, United States.
| |
Collapse
|
4
|
Wang Y, Duan X, Xie Y, Sun H, Wang S. Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04232] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yongbing Xie
- Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
5
|
Yu G, Wang Y, Cao H, Zhao H, Xie Y. Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5931-5946. [PMID: 32324393 DOI: 10.1021/acs.est.0c00575] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) processes have been widely studied for water purification. The reaction mechanisms of these processes are very complicated because of the simultaneous involvement of gas, solid, and liquid phases. Although typical reaction mechanisms have been established for HCO, some of them are only appropriate for specific systems. The divergence and deficiency in mechanisms hinders the development of novel active catalysts. This critical review compares the various existing mechanisms and categorizes the catalytic oxidation of HCO into radical-based oxidation and nonradical oxidation processes with an in-depth discussion. The catalytic active sites and adsorption behaviors of O3 molecules on the catalyst surface are regarded as the key clues for further elucidating the O3 activation processes, evolution of reactive oxygen species (ROS) or organic oxidation pathways. Moreover, the detection methods of the ROS produced in both types of oxidations and their roles in the destruction of organics are reviewed with discussion of some specific problems among them, including the scavengers selection, experiment results analysis as well as some questionable conclusions. Finally, alternative strategies for the systematic investigation of the HCO mechanism and the prospects for future studies are envisaged.
Collapse
Affiliation(s)
- Guangfei Yu
- CAS Key Laboratory of Green Process & Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum- Beijing, Beijing 102249, China
| | - Hongbin Cao
- CAS Key Laboratory of Green Process & Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhao
- CAS Key Laboratory of Green Process & Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Xie
- CAS Key Laboratory of Green Process & Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Ropp PJ, Kaminsky JC, Yablonski S, Durrant JD. Dimorphite-DL: an open-source program for enumerating the ionization states of drug-like small molecules. J Cheminform 2019; 11:14. [PMID: 30767086 PMCID: PMC6689865 DOI: 10.1186/s13321-019-0336-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Small-molecule protonation can promote or discourage protein binding by altering hydrogen-bond, electrostatic, and van-der-Waals interactions. To improve virtual-screen pose and affinity predictions, researchers must account for all major small-molecule ionization states. But existing programs for calculating these states have notable limitations such as high cost, restrictive licenses, slow execution times, and poor modularity. Here, we present dimorphite-DL 1.0, a fast, accurate, accessible, and modular open-source program for enumerating small-molecule ionization states. Dimorphite-DL uses a straightforward empirical algorithm that leverages substructure searching and draws on a database of experimentally characterized ionizable molecules. We have tested dimorphite-DL using several versions of Python and RDKit on all major operating systems. We release it under the terms of the Apache License, Version 2.0. A copy is available free of charge from http://durrantlab.com/dimorphite-dl/.
Collapse
Affiliation(s)
- Patrick J Ropp
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Jesse C Kaminsky
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Sara Yablonski
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
7
|
Gorbanev Y, Privat-Maldonado A, Bogaerts A. Analysis of Short-Lived Reactive Species in Plasma-Air-Water Systems: The Dos and the Do Nots. Anal Chem 2018; 90:13151-13158. [PMID: 30289686 DOI: 10.1021/acs.analchem.8b03336] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric pressure plasmas, which are widely employed in industrial and biomedical research, as well as first clinical applications. We summarize the progress in detection of plasma-generated short-lived reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of various analytical methods in plasma-liquid systems, and provide an outlook on the possible future research goals in development of short-lived reactive species analysis methods for a general nonspecialist audience.
Collapse
Affiliation(s)
- Yury Gorbanev
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| | - Angela Privat-Maldonado
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610.,Center for Oncological Research (CORE) , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry , University of Antwerp , Wilrijk , Antwerpen , Belgium BE-2610
| |
Collapse
|
8
|
Khataee AR, Pakdehi SG. Removal of sodium azide from aqueous solution by Fenton-like process using natural laterite as a heterogeneous catalyst: Kinetic modeling based on nonlinear regression analysis. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
|
10
|
Betterton EA, Lowry J, Ingamells R, Venner B. Kinetics and mechanism of the reaction of sodium azide with hypochlorite in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2010; 182:716-722. [PMID: 20667654 DOI: 10.1016/j.jhazmat.2010.06.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 05/29/2023]
Abstract
Production of toxic sodium azide (NaN(3)) surged worldwide over the past two decades to meet the demand for automobile air bag inflator propellant. Industrial activity and the return of millions of inflators to automobile recycling facilities are leading to increasing release of NaN(3) to the environment so there is considerable interest in learning more about its environmental fate. Water soluble NaN(3) could conceivably be found in drinking water supplies so here we describe the kinetics and mechanism of the reaction of azide with hypochlorite, which is often used in water treatment plants. The reaction stoichiometry is: HOCl + 2N(3)(-) = 3N(2) + Cl(-) + OH(-), and proceeds by a key intermediate chlorine azide, ClN(3), which subsequently decomposes by reaction with a second azide molecule in the rate determining step: ClN(3) + N(3)(-) --> 3N(2) + Cl(-) (k = 0.52+/-0.04 M(-1) s(-1), 25 degrees C, mu = 0.1 M). We estimate that the half-life of azide would be approximately 15 s at the point of chlorination in a water treatment plant and approximately 24 days at some point downstream where only residual chlorine remains. Hypochlorite is not recommended for treatment of concentrated azide waste due to formation of the toxic chlorine azide intermediate under acidic conditions and the slow kinetics under basic conditions.
Collapse
Affiliation(s)
- Eric A Betterton
- Department of Atmospheric Sciences, The University of Arizona, P.O. Box 210081, Tucson, AZ 85721-0081, United States.
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Nahed Sawwan
- Department of Chemistry, Graduate School and University Center and The City University of New York (CUNY), Brooklyn College, Brooklyn, New York 11210, USA
| | | |
Collapse
|
12
|
Chang S, Lamm SH. Human health effects of sodium azide exposure: a literature review and analysis. Int J Toxicol 2003; 22:175-86. [PMID: 12851150 DOI: 10.1080/10915810305109] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sodium azide, used mainly as a preservative in aqueous laboratory reagents and biologic fluids and as a fuel in automobile airbag gas generants, has caused deaths for decades. Its exposure potential for the general population increases as the use of airbags increase. In order to characterize the known health effects of sodium azide in humans and the circumstances of their exposure, the authors conducted a systematic review of the literature from 1927 to 2002 on human exposure to sodium azide and its health effects. The most commonly reported health effect from azide exposure is hypotension, almost independent of route of exposure. Most industrial exposures are by inhalation. Most laboratory exposures or suicide attempts are by ingestion. Most of the reported cases involved persons working in laboratories. The time between exposure and detection of hypotension can predict outcome. Fatal doses occur with exposures of >or=700 mg (10 mg/kg). Nonlethal doses ranged from 0.3 to 150 mg (0.004 to 2 mg/kg). Onset of hypotension within minutes or in less than an hour is indicative of a pharmacological response and a benign course. Hypotension with late onset (>1 hour) constitutes an ominous sign for death. All individuals with hypotension for more than an hour died. Additional health effects included mild complaints of nausea, vomiting, diarrhea, headache, dizziness, temporary loss of vision, palpitation, dyspnea, or temporary loss of consciousness or mental status decrease. More severe symptoms and signs included marked decreased mental status, seizure, coma, arrhythmia, tachypnea, pulmonary edema, metabolic acidosis, and cardiorespiratory arrest. The signs and symptoms from lower exposures (<700 mg) are physiological responses at the vascular level and those at or above are toxicological responses at the metabolic level. There is no specific antidote for sodium azide intoxication. Recommended preventive measures for sodium azide exposure consist of education of people at high risk, such as laboratory workers, regarding its chemical properties and toxicity, better labeling of products containing sodium azide, and strict enforcement of laboratory regulations and access control.
Collapse
Affiliation(s)
- Soju Chang
- Preventive Medicine Residency Program, John Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
13
|
Lin SH, Huang CP. Adsorption of hydrazoic acid from aqueous solution by macroreticular resin. JOURNAL OF HAZARDOUS MATERIALS 2001; 84:217-228. [PMID: 11406307 DOI: 10.1016/s0304-3894(01)00228-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sodium azide is a key component in the automobile air bag. When dissolved in aqueous solution, it reacts rapidly with water to form hydrazoic acid which is a highly toxic chemical and is strongly regulated by government. In the present study, adsorption of hydrazoic acid from aqueous solution by macroreticular resin is investigated. This method can provides a convenient means for dealing with the toxic hydrazoic acid. Experimental tests of batch equilibrium adsorption and continuous column adsorption of hydrazoic acid were conducted and the test results were employed to establish adsorption isotherm and to evaluate the column adsorption efficiency. The test results revealed that the multilayer adsorption isotherms, like the modified Langmuir or Jossens model, are needed to adequately describe the hydrazoic acid adsorption equilibrium between the liquid and solid (resin) phases. In the column adsorption process, a theoretical model was adopted for representing the hydrazoic acid change in the aqueous solution exiting the column and the verified theoretical model significantly facilitates prediction of adsorption breakthroughs and column design. Regeneration of exhausted resin was investigated. Solution of 10% (w/w) NaCl was found to be a very efficient regenerant.
Collapse
Affiliation(s)
- S H Lin
- Department of Chemical Engineering, Yuan Ze University, 320, Chungli, Taiwan, ROC.
| | | |
Collapse
|