1
|
Ulaangerel T, Yi M, Budsuren U, Shen Y, Ren H, Demuul B, Bai D, Dorjgotov D, Davaakhuu G, Jambal T, Dugarjav M, Bou G. Condition optimization for electroporation transfection in horse skeletal muscle satellite cells. Anim Biotechnol 2024; 35:2280664. [PMID: 37982395 DOI: 10.1080/10495398.2023.2280664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Satellite cells are an important cellular model for studying muscle growth and development and mammalian locomotion-related molecular mechanisms. In this study, we investigated the effects of voltage, pulse duration, and DNA dosage on horse skeletal muscle satellite cells' electroporation transfection efficiency using the eukaryotic expression plasmid Td Tomato-C1 (5.5 kb) encoding the red fluorescent protein gene mainly based on fluorescence-positive cell rate and cell survival rate. By comparison of different voltages, pulse durations, and DNA doses, horse skeletal muscle satellite cells have nearly 80% transfection efficiency under the condition of voltage 120 V, DNA dosage 7 µg/ml, and pulse duration 30 ms. This optimized electroporation condition would facilitate the application of horse skeletal muscle satellite cells in genetic studies of muscle function and related diseases.
Collapse
Affiliation(s)
- Tseweendolmaa Ulaangerel
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Minna Yi
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Undarmaa Budsuren
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- School of Animal Science and Biotechnology, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Yingchao Shen
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hong Ren
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Bold Demuul
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dulguun Dorjgotov
- School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Gantulga Davaakhuu
- Institute of General and Experimental Biology, Mongolian Academy of Science, Ulaanbaatar, Mongolia
| | - Tuyatsetseg Jambal
- School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Manglai Dugarjav
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Gerelchimeg Bou
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Zhang G, Zhang L, Wei Y, Wang J, Ding F, Dai G, Xie K. Polymorphisms of the myostatin gene and its relationship with reproduction traits in the Bian chicken. Anim Biotechnol 2012; 23:184-93. [PMID: 22870873 DOI: 10.1080/10495398.2012.681411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myostatin, or growth and differentiation factor 8, is a member of the transforming growth factor-β superfamily; it functions as a negative regulator of skeletal muscle development and growth in mammals. In this study, single nucleotide polymorphisms in the 5' regulatory region and exon 1 of the myostatin gene were detected by PCR-SSCP in the Bian, Jinghai, Youxi, and Arbor Acre chickens, and the associations of the polymorphisms with reproduction traits were analyzed. Seven SNPs (A326G, C334G, C1346T, G1375A, A1473G, G1491A, and G2283A) were found in the myostatin gene. Association analysis showed that the G2283A were significantly associated with reproduction traits. Bian chickens of the GG genotype had a greater age at first egg than those of the GA and AA genotypes (P<0.01). Correspondingly, Bian chickens of the GA and AA genotypes had larger egg number at 300 days than those of the GG genotype (P<0.05 and P<0.01, respectively). Bian chickens of the AA genotype had significantly higher body weight at 300 days than those of the GG genotype (P<0.05). These results suggested that the myostatin gene may have certain effects on reproduction traits other than merely as a negative regulator of skeletal muscle development and growth in mammals previously reported.
Collapse
Affiliation(s)
- Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | |
Collapse
|