1
|
Barroso LMA, Nascimento M, Nascimento ACC, Silva FF, Serão NVL, Cruz CD, Resende MDV, Silva FL, Azevedo CF, Lopes PS, Guimarães SEF. Regularized quantile regression for SNP marker estimation of pig growth curves. J Anim Sci Biotechnol 2017; 8:59. [PMID: 28702191 PMCID: PMC5504997 DOI: 10.1186/s40104-017-0187-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/06/2017] [Indexed: 11/14/2022] Open
Abstract
Background Genomic growth curves are generally defined only in terms of population mean; an alternative approach that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression (QR). This methodology allows for the estimation of marker effects at different levels of the variable of interest. We aimed to propose and evaluate a regularized quantile regression for SNP marker effect estimation of pig growth curves, as well as to identify the chromosome regions of the most relevant markers and to estimate the genetic individual weight trajectory over time (genomic growth curve) under different quantiles (levels). Results The regularized quantile regression (RQR) enabled the discovery, at different levels of interest (quantiles), of the most relevant markers allowing for the identification of QTL regions. We found the same relevant markers simultaneously affecting different growth curve parameters (mature weight and maturity rate): two (ALGA0096701 and ALGA0029483) for RQR(0.2), one (ALGA0096701) for RQR(0.5), and one (ALGA0003761) for RQR(0.8). Three average genomic growth curves were obtained and the behavior was explained by the curve in quantile 0.2, which differed from the others. Conclusions RQR allowed for the construction of genomic growth curves, which is the key to identifying and selecting the most desirable animals for breeding purposes. Furthermore, the proposed model enabled us to find, at different levels of interest (quantiles), the most relevant markers for each trait (growth curve parameter estimates) and their respective chromosomal positions (identification of new QTL regions for growth curves in pigs). These markers can be exploited under the context of marker assisted selection while aiming to change the shape of pig growth curves.
Collapse
Affiliation(s)
- L M A Barroso
- Department of Statistics, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| | - M Nascimento
- Department of Statistics, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| | - A C C Nascimento
- Department of Statistics, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| | - F F Silva
- Department of Animal Science, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| | - N V L Serão
- Department of Animal Science, Iowa State University, Kildee Hall 50011 Ames, Iowa, USA
| | - C D Cruz
- Department of General Biology, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| | - M D V Resende
- Department of Statistics, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil.,Embrapa Forestry, Estrada da Ribeira, km 111, Colombo, PR Brazil
| | - F L Silva
- Department of Plant Science, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| | - C F Azevedo
- Department of Statistics, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| | - P S Lopes
- Department of Animal Science, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| | - S E F Guimarães
- Department of Animal Science, Federal University of Viçosa, Av. P H Rolfs, s/n, University Campus, Viçosa, MG 36570-000 Brazil
| |
Collapse
|
2
|
Robledo D, Fernández C, Hermida M, Sciara A, Álvarez-Dios JA, Cabaleiro S, Caamaño R, Martínez P, Bouza C. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot. Int J Mol Sci 2016; 17:243. [PMID: 26901189 PMCID: PMC4783974 DOI: 10.3390/ijms17020243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Carlos Fernández
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Miguel Hermida
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Andrés Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario S2002LRK, Argentina.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Rubén Caamaño
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Carmen Bouza
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
3
|
Hausman GJ, Basu U, Wei S, Hausman DB, Dodson MV. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location. Annu Rev Anim Biosci 2015; 2:323-51. [PMID: 25384146 DOI: 10.1146/annurev-animal-022513-114211] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.
Collapse
|
4
|
Tong X, Zhang Z, Jiao Y, Xu J, Dang H, Chen Y, Jiang Z, Duan J, Zhang H, Li J, Wang C. Association of eight EST-derived SNPs with carcass and meat quality traits in pigs. J Appl Genet 2014; 56:85-95. [PMID: 25081836 DOI: 10.1007/s13353-014-0234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/29/2014] [Accepted: 07/07/2014] [Indexed: 12/01/2022]
Abstract
The identification of genetic markers associated with important economic traits is fundamental to improving the productivity and quality of livestock. In this investigation, we searched for 177 expressed sequence tags (ESTs) putatively involved in meat quality from the available pig EST database, and detected eight single nucleotide polymorphisms (SNPs) in eight ESTs. We investigated the associations of these SNPs with 18 carcass and meat quality traits in a Landrace × Lantang F2 resource population (n = 257). Association analysis revealed that seven SNPs (except E42) were associated with some of the carcass- and meat quality-related traits. Particularly, significant associations of three SNPs (E53, E82, and E36) with backfat thickness traits were observed. Further, the genetic effects of E53 on four live backfat thickness traits were validated in an independent population (n = 221). More investigations about E53 sequence characteristics were performed, i.e., radiation hybrid (RH) mapping, 3'-RACE, and screening analysis of the positive BAC clones. Our research identified the genetic effects of eight EST-derived SNPs on carcass and meat quality traits, and suggested that E53 may be a useful marker for live backfat thickness traits in pig breeding programs.
Collapse
Affiliation(s)
- Xiong Tong
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jung H, Lyons RE, Li Y, Thanh NM, Dinh H, Hurwood DA, Salin KR, Mather PB. A candidate gene association study for growth performance in an improved giant freshwater prawn (Macrobrachium rosenbergii ) culture line. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:161-180. [PMID: 24122143 DOI: 10.1007/s10126-013-9555-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/06/2013] [Indexed: 06/02/2023]
Abstract
A candidate gene approach using type I single nucleotide polymorphism (SNP) markers can provide an effective method for detecting genes and gene regions that underlie phenotypic variation in adaptively significant traits. In the absence of available genomic data resources, transcriptomes were recently generated in Macrobrachium rosenbergii to identify candidate genes and markers potentially associated with growth. The characterisation of 47 candidate loci by ABI re-sequencing of four cultured and eight wild samples revealed 342 putative SNPs. Among these, 28 SNPs were selected in 23 growth-related candidate genes to genotype in 200 animals selected for improved growth performance in an experimental GFP culture line in Vietnam. The associations between SNP markers and individual growth performance were then examined. For additive and dominant effects, a total of three exonic SNPs in glycogen phosphorylase (additive), heat shock protein 90 (additive and dominant) and peroxidasin (additive), and a total of six intronic SNPs in ankyrin repeats-like protein (additive and dominant), rolling pebbles (dominant), transforming growth factor-β induced precursor (dominant), and UTP-glucose-1-phosphate uridylyltransferase 2 (dominant) genes showed significant associations with the estimated breeding values in the experimental animals (P =0.001-0.031). Individually, they explained 2.6-4.8 % of the genetic variance (R²=0.026-0.048). This is the first large set of SNP markers reported for M. rosenbergii and will be useful for confirmation of associations in other samples or culture lines as well as having applications in marker-assisted selection in future breeding programs.
Collapse
|
6
|
Dall'Olio S, Fontanesi L, Buttazzoni L, Baiocco C, Gallo M, Russo V. Association study between single nucleotide polymorphisms in candidate genes and reproduction traits in Italian Large White sows. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Chalupová P, Urban T, Knoll A. Association analysis of interleukin-18 gene with performance traits in Czech Large White pigs. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2013. [DOI: 10.11118/actaun201260050097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Hu Y, Xu H, Li Z, Zheng X, Jia X, Nie Q, Zhang X. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PLoS One 2013; 8:e56411. [PMID: 23441189 PMCID: PMC3575439 DOI: 10.1371/journal.pone.0056411] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/09/2013] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Growth traits are important in poultry production, however, little is known for its regulatory mechanism at epigenetic level. Therefore, in this study, we aim to compare DNA methylation profiles between fast- and slow-growing broilers in order to identify candidate genes for chicken growth. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation pattern in high and low tails of Recessive White Rock (WRR(h); WRR(l)) and that of Xinhua Chickens (XH(h); XH(l)) at 7 weeks of age. The results showed that the average methylation density was the lowest in CGIs followed by promoters. Within the gene body, the methylation density of introns was higher than that of UTRs and exons. Moreover, different methylation levels were observed in different repeat types with the highest in LINE/CR1. Methylated CGIs were prominently distributed in the intergenic regions and were enriched in the size ranging 200-300 bp. In total 13,294 methylated genes were found in four samples, including 4,085 differentially methylated genes of WRR(h) Vs. WRR(l), 5,599 of XH(h) Vs. XH(l), 4,204 of WRR(h) Vs. XH(h), as well as 7,301 of WRR(l) Vs. XH(l). Moreover, 132 differentially methylated genes related to growth and metabolism were observed in both inner contrasts (WRR(h) Vs. WRR(l) and XH(h) Vs. XH(l)), whereas 129 differentially methylated genes related to growth and metabolism were found in both across-breed contrasts (WRR(h) Vs. XH(h) and WRR(l) Vs. XH(l)). Further analysis showed that overall 75 genes exhibited altered DNA methylation in all four contrasts, which included some well-known growth factors of IGF1R, FGF12, FGF14, FGF18, FGFR2, and FGFR3. In addition, we validate the MeDIP-seq results by bisulfite sequencing in some regions. CONCLUSIONS This study revealed the global DNA methylation pattern of chicken muscle, and identified candidate genes that potentially regulate muscle development at 7 weeks of age at methylation level.
Collapse
Affiliation(s)
- Yongsheng Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Xuejuan Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Xinzheng Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Molecular characterization of TGF-β type I receptor gene (Tgfbr1) in Chlamys farreri, and the association of allelic variants with growth traits. PLoS One 2012; 7:e51005. [PMID: 23209843 PMCID: PMC3510168 DOI: 10.1371/journal.pone.0051005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 10/31/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Scallops are an economically important aquaculture species in Asian countries, and growth-rate improvement is one of the main focuses of scallop breeding. Investigating the genetic regulation of scallop growth could benefit scallop breeding, as such research is currently limited. The transforming growth factor beta (TGF-β) signaling through type I and type II receptors, plays critical roles in regulating cell proliferation and growth, and is thus a plausible candidate growth regulator in scallops. RESULTS We cloned and characterized the TGF-β type I receptor (Tgfbr1) gene from Zhikong scallops (Chlamys farreri). The deduced amino acid sequence contains characteristic residues and exhibits the conserved structure of Tgfbr1 proteins. A high expression level of scallop Tgfbr1 was detected during early embryonic stages, whereas Tgfbr1 expression was enriched in the gonad and striated muscle in adults. A single nucleotide polymorphism (SNP, c. 1815C>T) in the 3' UTR was identified. Scallops with genotype TT had higher growth traits values than those with genotype CC or CT in a full-sib family, and significant differences were found between genotypes CC and TT for shell length, shell height, and striated muscle weight. An expression analysis detected significantly more Tgfbr1 transcripts in the striated muscle of scallops with genotype CC compared to those with genotype TT or CT. Further evaluation in a population also revealed higher striated muscle weight in scallops with genotype TT than those with the other two genotypes. The inverse correlation between striated muscle mass and Tgfbr1 expression is consistent with TGF-β signaling having a negative effect on cell growth. CONCLUSION The scallop Tgfbr1 gene was cloned and characterized, and an SNP potentially associated with both scallop growth and Tgfbr1 expression was identified. Our results suggest the negative regulation of Tgfbr1 in scallop growth and provide a candidate marker for Zhikong scallop breeding.
Collapse
|