1
|
Wu D, Liu C, Ding L. Follicular metabolic dysfunction, oocyte aneuploidy and ovarian aging: a review. J Ovarian Res 2025; 18:53. [PMID: 40075456 PMCID: PMC11900476 DOI: 10.1186/s13048-025-01633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
With the development of modern society and prolonged education, more women choose to delay their childbearing age, which greatly increases the number of women aged older than 35 years with childbearing needs. However, with increasing age, the quantity and quality of oocytes continue to fall, especially with increasing aneuploidy, which leads to a low in vitro fertilization (IVF) success rate, high abortion rate and high teratogenesis rate in assisted reproduction in women with advanced maternal age. In addition to genetics and epigenetics, follicular metabolism homeostasis is closely related to ovarian aging and oocyte aneuploidy. Glucose, lipid, and amino acid metabolism not only provide energy for follicle genesis but also regulate oocyte development and maturation. This review focuses on the relationships among follicular metabolism, oocyte aneuploidy, and ovarian aging and discusses potential therapeutic metabolites for ovarian aging.
Collapse
Affiliation(s)
- Die Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
- Clinical Center for Stem Cell Research, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Talibova G, Bilmez Y, Tire B, Ozturk S. The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages. J Assist Reprod Genet 2024; 41:2419-2439. [PMID: 39023827 PMCID: PMC11405603 DOI: 10.1007/s10815-024-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (β-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT β-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.
Collapse
Affiliation(s)
- Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
3
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
4
|
Dias Nunes J, Demeestere I, Devos M. BRCA Mutations and Fertility Preservation. Int J Mol Sci 2023; 25:204. [PMID: 38203374 PMCID: PMC10778779 DOI: 10.3390/ijms25010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Hereditary cancers mostly affect the adolescent and young adult population (AYA) at reproductive age. Mutations in BReast CAncer (BRCA) genes are responsible for the majority of cases of hereditary breast and ovarian cancer. BRCA1 and BRCA2 act as tumor suppressor genes as they are key regulators of DNA repair through homologous recombination. Evidence of the accumulation of DNA double-strand break has been reported in aging oocytes, while BRCA expression decreases, leading to the hypothesis that BRCA mutation may impact fertility. Moreover, patients exposed to anticancer treatments are at higher risk of fertility-related issues, and BRCA mutations could exacerbate the treatment-induced depletion of the ovarian reserve. In this review, we summarized the functions of both genes and reported the current knowledge on the impact of BRCA mutations on ovarian ageing, premature ovarian insufficiency, female fertility preservation strategies and insights about male infertility. Altogether, this review provides relevant up-to-date information on the impact of BRCA1/2 mutations on fertility. Notably, BRCA-mutated patients should be adequately counselled for fertility preservation strategies, considering their higher sensitivity to chemotherapy gonadotoxic effects.
Collapse
Affiliation(s)
- Joana Dias Nunes
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
- Fertility Clinic, HUB-Erasme Hospital, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Melody Devos
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| |
Collapse
|
5
|
Newman H, Catt S, Vining B, Vollenhoven B, Horta F. DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: a systematic review. Mol Hum Reprod 2021; 28:6483093. [PMID: 34954800 DOI: 10.1093/molehr/gaab071] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sperm DNA damage is considered a predictive factor for the clinical outcomes of patients undergoing ART. Laboratory evidence suggests that zygotes and developing embryos have adopted specific response and repair mechanisms to repair DNA damage of paternal origin. We have conducted a systematic review in accordance with guidelines from Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to identify and review the maternal mechanisms used to respond and repair sperm DNA damage during early embryonic development, how these mechanisms operate and their potential clinical implications. The literature search was conducted in Ovid MEDLINE and Embase databases until May 2021. Out of 6297 articles initially identified, 36 studies were found to be relevant through cross referencing and were fully extracted. The collective evidence in human and animal models indicate that the early embryo has the capacity to repair DNA damage within sperm by activating maternally driven mechanisms throughout embryonic development. However, this capacity is limited and likely declines with age. The link between age and decreased DNA repair capacity could explain decreased oocyte quality in older women, poor reproductive outcomes in idiopathic cases, and patients who present high sperm DNA damage. Ultimately, further understanding mechanisms underlying the maternal repair of sperm DNA damage could lead to the development of targeted therapies to decrease sperm DNA damage, improved oocyte quality to combat incoming DNA insults or lead to development of methodologies to identify individual spermatozoa without DNA damage.
Collapse
Affiliation(s)
- H Newman
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - S Catt
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - B Vining
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - B Vollenhoven
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia.,Monash IVF, Melbourne, VIC, 3168, Australia.,Women's and Newborn Program, Monash Health, VIC, 3169, Australia
| | - F Horta
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia.,Monash IVF, Melbourne, VIC, 3168, Australia
| |
Collapse
|
6
|
Buigues A, Marchante M, de Miguel-Gómez L, Martinez J, Cervelló I, Pellicer A, Herraiz S. Stem cell-secreted factor therapy regenerates the ovarian niche and rescues follicles. Am J Obstet Gynecol 2021; 225:65.e1-65.e14. [PMID: 33539826 DOI: 10.1016/j.ajog.2021.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian senescence is a normal age-associated phenomenon, but increasingly younger women are affected by diminished ovarian reserves or premature ovarian insufficiency. There is an urgent need for developing therapies to improve ovarian function in these patients. In this context, previous studies suggest that stem cell-secreted factors could have regenerative properties in the ovaries. OBJECTIVE This study aimed to test the ability of various human plasma sources, enriched in stem cell-secreted factors, and the mechanisms behind their regenerative properties, to repair ovarian damage and to promote follicular development. STUDY DESIGN In the first phase, the effects of human plasma enriched in bone marrow stem cell soluble factors by granulocyte colony-stimulating factor mobilization, umbilical cord blood plasma, and their activated forms on ovarian niche, follicle development, and breeding performance were assessed in mouse models of chemotherapy-induced ovarian damage (n=7 per group). In addition, the proteomic profile of each plasma was analyzed to find putative proteins and mechanism involved in their regenerative properties in ovarian tissue. In the second phase, the most effective plasma treatment was validated in human ovarian cortex xenografted in immunodeficient mice (n=4 per group). RESULTS Infusion of human plasma enriched bone marrow stem cell soluble factors by granulocyte colony-stimulating factor mobilization or of umbilical cord blood plasma-induced varying degrees of microvessel formation and cell proliferation and reduced apoptosis in ovarian tissue to rescue follicular development and fertility in mouse models of ovarian damage. Plasma activation enhanced these effects. Activated granulocyte colony-stimulating factor plasma was the most potent inducing ovarian rescue in both mice and human ovaries, and proteomic analysis indicated that its effects may be mediated by soluble factors related to cell cycle and apoptosis, gene expression, signal transduction, cell communication, response to stress, and DNA repair of double-strand breaks, the most common form of age-induced damage in oocytes. CONCLUSION Our findings suggested that stem cell-secreted factors present in both granulocyte colony-stimulating factor-mobilized and umbilical cord blood plasma could be an effective treatment for increasing the reproductive outcomes in women with impaired ovarian function owing to several causes. The activated granulocyte colony-stimulating factor plasma, which is already enriched in both stem cell-secreted factors and platelet-enclosed growth factors, seems to be the most promising treatment because of its most potent restorative effects on the ovary together with the autologous source.
Collapse
|
7
|
Horta F, Catt S, Ramachandran P, Vollenhoven B, Temple-Smith P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum Reprod 2021; 35:529-544. [PMID: 32108237 DOI: 10.1093/humrep/dez308] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/17/2019] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION Does female ageing have a negative effect on the DNA repair capacity of oocytes fertilised by spermatozoa with controlled levels of DNA damage? SUMMARY ANSWER Compared to oocytes from younger females, oocytes from older females have a reduced capacity to repair damaged DNA introduced by spermatozoa. WHAT IS KNOWN ALREADY The reproductive lifespan in women declines with age predominantly due to poor oocyte quality. This leads to decreased reproductive outcomes for older women undergoing assisted reproductive technology (ART) treatments, compared to young women. Ageing and oocyte quality have been clearly associated with aneuploidy, but the range of factors that influence this change in oocyte quality with age remains unclear. The DNA repair activity prior to embryonic genomic activation is considered to be of maternal origin, with maternal transcripts and proteins controlling DNA integrity. With increasing maternal age, the number of mRNAs stored in oocytes decreases. This could result in diminished efficiency of DNA repair and/or negative effects on embryo development, especially in the presence of DNA damage. STUDY DESIGN, SIZE, DURATION Oocytes from two age groups of 30 super-ovulated female mice (young: 5-8 weeks old, n = 15; old: 42-45 weeks old, n = 15) were inseminated with sperm from five males with three different controlled DNA damage levels; control: ≤10%, 1 Gray (Gy): 11-30%, and 30 Gy: >30%. Inseminated oocytes (young: 125, old: 78) were assessed for the formation of zygotes (per oocyte) and blastocysts (per zygote). Five replicates of five germinal vesicles (GVs) and five MII oocytes from each age group were analysed for gene expression. The DNA damage response (DDR) was assessed in a minimum of three IVF replicates in control and 1 Gy zygotes and two-cell embryos using γH2AX labelling. PARTICIPANTS/MATERIALS, SETTING, METHODS Swim-up sperm samples from the cauda epididymidis of C57BL6 mice were divided into control (no irradiation) and 1- and 30-Gy groups. Treated spermatozoa were irradiated at 1 and 30 Gy, respectively, using a linear accelerator Varian 21iX. Following irradiation, samples were used for DNA damage assessment (Halomax) and for insemination. Presumed zygotes were cultured in a time-lapse incubator (MIRI, ESCO). Gene expression of 91 DNA repair genes was assessed using the Fluidigm Biomark HD system. The DNA damage response in zygotes (6-8 h post-fertilisation) and two-cell embryos (22-24 h post-fertilisation) was assessed by immunocytochemical analysis of γH2AX using confocal microscopy (Olympus FV1200) and 3D volumetric analysis using IMARIS software. MAIN RESULTS AND THE ROLE OF CHANCE The average sperm DNA damage for the three groups was statistically different (control: 6.1%, 1 Gy: 16.1%, 30 Gy: 53.1%, P < 0.0001), but there were no significant differences in fertilisation rates after IVF within or between the two age groups [(young; control: 86.79%, 1 Gy: 82.75%, 30 Gy: 76.74%) (old; control: 93.1%, 1 Gy: 70.37%, 30 Gy: 68.18%) Fisher's exact]. However, blastocyst rates were significantly different (P < 0.0001) among the groups [(young; control: 86.95%, 1 Gy: 33.33%, 30 Gy: 0.0%) (old; control: 70.37%, 1 Gy: 0.0%, 30 Gy: 0.0%)]. Between the age groups, 1-Gy samples showed a significant decrease in the blastocyst rate in old females compared to young females (P = 0.0166). Gene expression analysis revealed a decrease in relative expression of 21 DNA repair genes in old GV oocytes compared to young GV oocytes (P < 0.05), and similarly, old MII oocytes showed 23 genes with reduced expression compared to young MII oocytes (P < 0.05). The number of genes with decreased expression in older GV and MII oocytes significantly affected pathways such as double strand break (GV: 5; MII: 6), nucleotide excision repair (GV: 8; MII: 5) and DNA damage response (GV: 4; MII: 8). There was a decreased DDR in zygotes and in two-cell embryos from old females compared to young regardless of sperm treatment (P < 0.05). The decrease in DNA repair gene expression of oocytes and decreased DDR in embryos derived from older females suggests that ageing results in a diminished DNA repair capacity. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Ionising radiation was used only for experimental purposes, aiming at controlled levels of sperm DNA damage; however, it can also damage spermatozoa proteins. The female age groups selected in mice were intended to model effects in young and old women, but clinical studies are required to demonstrate a similar effect. WIDER IMPLICATIONS OF THE FINDINGS Fertilisation can occur with sperm populations with medium and high DNA damage, but subsequent embryo growth is affected to a greater extent with aging females, supporting the theory that oocyte DNA repair capacity decreases with age. Assessment of the oocyte DNA repair capacity may be a useful diagnostic tool for infertile couples. STUDY FUNDING/COMPETING INTEREST(S) Funded by the Education Program in Reproduction and Development, Department of Obstetrics and Gynaecology, Monash University. None of the authors has any conflict of interest to report.
Collapse
Affiliation(s)
- F Horta
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - S Catt
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - P Ramachandran
- Peter MacCallum Cancer Centre, Monash Health, Melbourne, VIC 3164, Australia
| | - B Vollenhoven
- Monash IVF, Melbourne, VIC 3168, Australia.,Women's and Newborn Program, Monash Health, VIC 3169, Australia.,Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - P Temple-Smith
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
8
|
Horta F, Ravichandran A, Catt S, Vollenhoven B, Temple-Smith P. Ageing and ovarian stimulation modulate the relative levels of transcript abundance of oocyte DNA repair genes during the germinal vesicle-metaphase II transition in mice. J Assist Reprod Genet 2021; 38:55-69. [PMID: 33067741 PMCID: PMC7822980 DOI: 10.1007/s10815-020-01981-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Oocyte quality and reproductive outcome are negatively affected by advanced maternal age, ovarian stimulation and method of oocyte maturation during assisted reproduction; however, the mechanisms responsible for these associations are not fully understood. The aim of this study was to compare the effects of ageing, ovarian stimulation and in-vitro maturation on the relative levels of transcript abundance of genes associated with DNA repair during the transition of germinal vesicle (GV) to metaphase II (MII) stages of oocyte development. METHODS The relative levels of transcript abundance of 90 DNA repair-associated genes was compared in GV-stage and MII-stage oocytes from unstimulated and hormone-stimulated ovaries from young (5-8-week-old) and old (42-45-week-old) C57BL6 mice. Ovarian stimulation was conducted using pregnant mare serum gonadotropin (PMSG) or anti-inhibin serum (AIS). DNA damage response was quantified by immunolabeling of the phosphorylated histone variant H2AX (γH2AX). RESULTS The relative transcript abundance in DNA repair genes was significantly lower in MII oocytes compared to GV oocytes in young unstimulated and PMSG stimulated but was higher in AIS-stimulated mice. Interestingly, an increase in the relative level of transcript abundance of DNA repair genes was observed in MII oocytes from older mice in unstimulated, PMSG-stimulated and AIS-stimulated mice. Decreased γH2AX levels were found in both GV oocytes (82.9%) and MII oocytes (37.5%) during ageing in both ovarian stimulation types used (PMSG/AIS; p < 0.05). CONCLUSIONS In conclusion, DNA repair relative levels of transcript abundance are altered by maternal age and the method of ovarian stimulation during the GV-MII transition in oocytes.
Collapse
Affiliation(s)
- Fabrizzio Horta
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia.
- Monash IVF, Melbourne, VIC, 3168, Australia.
| | - Aravind Ravichandran
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Sally Catt
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Beverley Vollenhoven
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia
- Monash IVF, Melbourne, VIC, 3168, Australia
- Women's and Newborn Program, Monash Health, Melbourne, Australia
| | - Peter Temple-Smith
- Education Program in Reproduction and Development, EPRD, Department of Obstetrics and Gynecology, School of Clinical Science, Monash University, Melbourne, VIC, 3168, Australia
| |
Collapse
|
9
|
Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt Signalling and DNA Damage in the Oocyte: Implications for Primordial Follicle Activation, Oocyte Quality and Ageing. Cells 2020; 9:E200. [PMID: 31947601 PMCID: PMC7016612 DOI: 10.3390/cells9010200] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
The preservation of genome integrity in the mammalian female germline from primordial follicle arrest to activation of growth to oocyte maturation is fundamental to ensure reproductive success. As oocytes are formed before birth and may remain dormant for many years, it is essential that defence mechanisms are monitored and well maintained. The phosphatase and tensin homolog of chromosome 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB, Akt) is a major signalling pathway governing primordial follicle recruitment and growth. This pathway also contributes to cell growth, survival and metabolism, and to the maintenance of genomic integrity. Accelerated primordial follicle activation through this pathway may result in a compromised DNA damage response (DDR). Additionally, the distinct DDR mechanisms in oocytes may become less efficient with ageing. This review considers DNA damage surveillance mechanisms and their links to the PTEN/PI3K/Akt signalling pathway, impacting on the DDR during growth activation of primordial follicles, and in ovarian ageing. Targeting DDR mechanisms within oocytes may be of value in developing techniques to protect ovaries against chemotherapy and in advancing clinical approaches to regulate primordial follicle activation.
Collapse
Affiliation(s)
- Mila Maidarti
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
- Obstetrics and Gynaecology Department, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (M.M.); (R.A.A.)
| | - Evelyn E. Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
10
|
Winship AL, Stringer JM, Liew SH, Hutt KJ. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Hum Reprod Update 2018; 24:119-134. [PMID: 29377997 DOI: 10.1093/humupd/dmy002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Within the ovary, oocytes are stored in long-lived structures called primordial follicles, each comprising a meiotically arrested oocyte, surrounded by somatic granulosa cells. It is essential that their genetic integrity is maintained throughout life to ensure that high quality oocytes are available for ovulation. Of all the possible types of DNA damage, DNA double-strand breaks (DSBs) are considered to be the most severe. Recent studies have shown that DNA DSBs can accumulate in oocytes in primordial follicles during reproductive ageing, and are readily induced by exogenous factors such as γ-irradiation, chemotherapy and environmental toxicants. DSBs can induce oocyte death or, alternatively, activate a program of DNA repair in order to restore genetic integrity and promote survival. The repair of DSBs has been intensively studied in the context of meiotic recombination, and in recent years more detail is becoming available regarding the repair capabilities of primordial follicle oocytes. OBJECTIVE AND RATIONALE This review discusses the induction and repair of DNA DSBs in primordial follicle oocytes. SEARCH METHODS PubMed (Medline) and Google Scholar searches were performed using the key words: primordial follicle oocyte, DNA repair, double-strand break, DNA damage, chemotherapy, radiotherapy, ageing, environmental toxicant. The literature was restricted to papers in the English language and limited to reports in animals and humans dated from 1964 until 2017. The references within these articles were also manually searched. OUTCOMES Recent experiments in animal models and humans have provided compelling evidence that primordial follicle oocytes can efficiently repair DNA DSBs arising from diverse origins, but this capacity may decline with increasing age. WIDER IMPLICATIONS Primordial follicle oocytes are vulnerable to DNA DSBs emanating from endogenous and exogenous sources. The ability to repair this damage is essential for female fertility. In the long term, augmenting DNA repair in primordial follicle oocytes has implications for the development of novel fertility preservation agents for female cancer patients and for the management of maternal ageing. However, further work is required to fully characterize the specific proteins involved and to develop strategies to bolster their activity.
Collapse
Affiliation(s)
- Amy L Winship
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jessica M Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Karla J Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|