1
|
Chen Z, Li J, Bai Y, Liu Z, Wei Y, Guo D, Jia X, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Unlocking the Transcriptional Control of NCAPG in Bovine Myoblasts: CREB1 and MYOD1 as Key Players. Int J Mol Sci 2024; 25:2506. [PMID: 38473754 DOI: 10.3390/ijms25052506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Muscle formation directly determines meat production and quality. The non-SMC condensin I complex subunit G (NCAPG) is strongly linked to the growth features of domestic animals because it is essential in controlling muscle growth and development. This study aims to elucidate the tissue expression level of the bovine NCAPG gene, and determine the key transcription factors for regulating the bovine NCAPG gene. In this study, we observed that the bovine NCAPG gene exhibited high expression levels in longissimus dorsi and spleen tissues. Subsequently, we cloned and characterized the promoter region of the bovine NCAPG gene, consisting of a 2039 bp sequence, through constructing the deletion fragment double-luciferase reporter vector and site-directed mutation-identifying core promoter region with its key transcription factor binding site. In addition, the key transcription factors of the core promoter sequence of the bovine NCAPG gene were analyzed and predicted using online software. Furthermore, by integrating overexpression experiments and the electrophoretic mobility shift assay (EMSA), we have shown that cAMP response element binding protein 1 (CREB1) and myogenic differentiation 1 (MYOD1) bind to the core promoter region (-598/+87), activating transcription activity in the bovine NCAPG gene. In conclusion, these findings shed important light on the regulatory network mechanism that underlies the expression of the NCAPG gene throughout the development of the muscles in beef cattle.
Collapse
Affiliation(s)
- Zongchang Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingsheng Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanbin Bai
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhanxin Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yali Wei
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Dashan Guo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Jia
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangmin Han
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Cheng J, Cao XK, Peng SJ, Wang XG, Li Z, Elnour IE, Huang YZ, Lan XY, Chen H. Transcriptional regulation of the bovine FGFR1 gene facilitates myoblast proliferation under hypomethylation of the promoter. J Cell Physiol 2020; 235:8667-8678. [PMID: 32324257 DOI: 10.1002/jcp.29711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
DNA methylation, which can affect the expression level of genes, is one of the most vital epigenetic modifications in mammals. Fibroblast growth factor receptor 1 (FGFR1) plays an important role in muscle development; however, DNA methylation of the FGFR1 promoter has not been studied to date in cattle. Our study focused on methylation of the FGFR1 promoter and its effect on bovine myoblast proliferation and differentiation. We identified the FGFR1 core promoter by using luciferase reporter assays; we then studied FGFR1 expression by reverse transcription quantitative polymerase chain reaction, and the methylation pattern in the FGFR1 core promoter by bisulfite sequencing polymerase chain reaction in bovine muscle tissue at three different developmental stages. We used RNAi strategy to investigate the function of FGFR1 in myoblast proliferation and differentiation. Results showed that the FGFR1 core promoters were located at the R2 (-509 to ~-202 bp) and R4 (-1295 to ~-794 bp) regions upstream of the FGFR1 gene. FGFR1 expression level was negatively associated with the degree of methylation of the FGFR1 core promoter during the developmental process. In addition, we found that FGFR1 can promote myoblast proliferation, but had no effect on myoblast differentiation. In conclusion, our results suggest that FGFR1 can promote myoblast proliferation and its transcription can be regulated by the methylation level of the core promoter. Our findings provide a mechanistic basis for the improvement of animal breeding.
Collapse
Affiliation(s)
- Jie Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiu-Kai Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shu-Jun Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-Gang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhuang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ibrahim-Elsaeid Elnour
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|