1
|
Samiec M. Molecular Mechanisms of Somatic Cell Cloning and Other Assisted Reproductive Technologies in Mammals: Which Determinants Have Been Unraveled Thus Far?-Current Status, Further Progress and Future Challenges. Int J Mol Sci 2024; 25:13675. [PMID: 39769437 PMCID: PMC11679799 DOI: 10.3390/ijms252413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Taking into consideration recent reports on the successful creation of cloned rhesus monkeys [...].
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| |
Collapse
|
2
|
Uysal O, Abed-Elmdoust A, Rahimi R, Farahmand Y. A systematic review and meta-analysis on the deleterious effects of 6-dimethylaminopurine on bovine embryonic development. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Abstract
Porcine cloning technology can be used to produce progenies genetically identical to the donor cells from high-quality breeding pigs. In addition, genetically modified pigs have been produced by somatic cell nuclear transfer using genetically modified porcine fetal fibroblasts. The method of preparing genetically modified pigs is critical for establishing pig models for human diseases, and for generating donor animals for future xenotransplantation. This chapter describes detailed procedures for generating cloned pigs using fetal fibroblasts as nuclear donors.
Collapse
Affiliation(s)
- Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Lee J, Kim E, Hwang SU, Cai L, Kim M, Choi H, Oh D, Lee E, Hyun SH. Effect of D-Glucuronic Acid and N-acetyl-D-Glucosamine Treatment during In Vitro Maturation on Embryonic Development after Parthenogenesis and Somatic Cell Nuclear Transfer in Pigs. Animals (Basel) 2021; 11:ani11041034. [PMID: 33917537 PMCID: PMC8067516 DOI: 10.3390/ani11041034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Hyaluronic acid, also known as hyaluronan, is essential for the expansion of cumulus cells, the maturation of oocytes, and further embryo development. This study aimed to examine the effects of treatment with glucuronic acid and N-acetyl-D-glucosamine, which are components of hyaluronic acid, during porcine oocyte in vitro maturation and embryonic development after parthenogenetic activation and somatic cell nuclear transfer. We measured the diameter of mature oocytes, the thickness of the perivitelline space, the intracellular reactive oxygen species level, and the expression of cumulus cell expansion genes and reactive oxygen species-related genes and examined the cortical granule reaction of oocytes after electrical activation. In conclusion, the addition of 0.05 mM glucuronic acid and 0.05 mM N-acetyl-D-glucosamine and during the initial 22 h of in vitro maturation in pig oocytes has beneficial effects on cumulus expansion, perivitelline space thickness, cytoplasmic maturation, reactive oxygen species level, cortical granule exocytosis, and early embryonic development after parthenogenesis and somatic cell nuclear transfer. Glucuronic acid and N-acetyl-D-glucosamine can be applied to in vitro production technology and can be used as ingredients to produce high-quality porcine blastocysts. Abstract This study aimed to examine the effects of treatment with glucuronic acid (GA) and N-acetyl-D-glucosamine (AG), which are components of hyaluronic acid (HA), during porcine oocyte in vitro maturation (IVM). We measured the diameter of the oocyte, the thickness of the perivitelline space (PVS), the reactive oxygen species (ROS) level, and the expression of cumulus cell expansion and ROS-related genes and examined the cortical granule (CG) reaction of oocytes. The addition of 0.05 mM GA and 0.05 mM AG during the first 22 h of oocyte IVM significantly increased oocyte diameter and PVS size compared with the control (non-treatment). The addition of GA and AG reduced the intra-oocyte ROS content and improved the CG of the oocyte. GA and AG treatment increased the expression of CD44 and CX43 in cumulus cells and PRDX1 and TXN2 in oocytes. In both the chemically defined and the complex medium (Medium-199 + porcine follicular fluid), oocytes derived from the GA and AG treatments presented significantly higher blastocyst rates than the control after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT). In conclusion, the addition of GA and AG during IVM in pig oocytes has beneficial effects on oocyte IVM and early embryonic development after PA and SCNT.
Collapse
Affiliation(s)
- Joohyeong Lee
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (E.L.); (S.-H.H.); Tel.: +82-33-250-8670 (E.L.); +82-43-261-3393 (S.-H.H.)
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Bio-technology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (J.L.); (E.K.); (S.-U.H.); (L.C.); (M.K.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.L.); (S.-H.H.); Tel.: +82-33-250-8670 (E.L.); +82-43-261-3393 (S.-H.H.)
| |
Collapse
|
5
|
Lee J, Lee Y, Lee GS, Lee ST, Lee E. Comparative study of the developmental competence of cloned pig embryos derived from spermatogonial stem cells and fetal fibroblasts. Reprod Domest Anim 2019; 54:1258-1264. [PMID: 31283039 DOI: 10.1111/rda.13507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/04/2019] [Indexed: 01/27/2023]
Abstract
Spermatogonial stem cells (SSC) are promising resources for genetic preservation and restoration of male germ cells in humans and animals. However, no studies have used SSC as donor nuclei in pig somatic cell nuclear transfer (SCNT). This study investigated the potential for use of porcine SSC as a nuclei donor for SCNT and developmental competence of SSC-derived cloned embryos. In addition, demecolcine was investigated to determine whether it could prevent rupture of SSC during SCNT. When the potential of SSC to support embryonic development after SCNT was compared with that of foetal fibroblasts (FF), SSC-derived SCNT embryos showed a higher (p < .05) developmental competence to the blastocyst stage (47.8%) than FF-derived embryos (25.6%). However, when SSC were used as donor nuclei in the SCNT process, cell fusion rates were lower (p < .05) than when FF were used (61.9% vs. 75.8%). Treatment of SSC with demecolcine significantly (p < .05) decreased rupture of SSC during the SCNT procedure (7.5% vs. 18.8%) and increased fusion of cell-oocyte couplets compared with no treatment (74.6% vs. 61.6%). In addition, SSC-derived SCNT embryos showed higher blastocyst formation (48.4%) than FF-derived embryos without (28.4%) and with demecolcine treatment (17.4%), even after demecolcine treatment. Our results demonstrate that porcine SSC are a desirable donor cell type for production of SCNT pig embryos and that demecolcine increases production efficiency of cloned embryos by inhibiting rupture of nuclei donor SSC during SCNT.
Collapse
Affiliation(s)
- Joohyeong Lee
- Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Yongjin Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Geun-Shik Lee
- Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea.,College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Seung Tae Lee
- College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Eunsong Lee
- Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea.,College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|