1
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in Small Tail Han sheep with FecB++ genotype. Anim Biotechnol 2024; 35:2254568. [PMID: 37694839 DOI: 10.1080/10495398.2023.2254568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The thyroid gland is an important endocrine gland in animals, which mainly secretes thyroid hormones and acts on various organs of the body. Long-chain non-coding RNA (lncRNA) plays an important role in animal reproduction. However, there is still a lack of understanding of their expression patterns and potential roles in the thyroid of Small Tail Han (STH) sheep. In this study, RNA-seq was used to examine the transcriptome expression patterns of lncRNAs and mRNAs in the follicular phase (ww_FT) and luteal phase (ww_LT) in FecB++ genotype STH Sheep. A total of 17,217 lncRNAs and 39,112 mRNAs were identified including 96 differentially expressed lncRNAs (DELs) and 1054 differentially expressed mRNAs (DEGs). Functional analysis of genes with significant differences in expression level showed that these genes could be enriched in Ras signalling pathway, hedgehog (HH) signalling pathway, ATP-binding cassette (ABC) transporters and other signalling pathways related to animal reproduction. In addition, through correlation analysis for lncRNA-mRNA co-expression and network construction, we found that LNC_009115 and LNC_005796 trans target NIK-related kinase (NRK) and poly(A)-specific ribonuclease (PARN). LNC_007189 and LNC_002045 trans target progesterone-induced blocking factor 1 (PIBF1), LNC_009013 trans targets small mothers against decapentaplegic (SMAD1) are related to animal reproduction. These genes add new resources for elucidating the regulatory mechanisms of reproduction in sheep with different reproductive cycles of the FecB++ genotype STH sheep.
Collapse
Affiliation(s)
- Cheng Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Transcriptome Analysis Reveals Differentially Expressed circRNAs Associated with Fecundity in Small-Tail Han Sheep Thyroid with Different FecB Genotypes. Animals (Basel) 2023; 14:105. [PMID: 38200837 PMCID: PMC10777913 DOI: 10.3390/ani14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Litter size is an economically important trait in sheep, and it is a complex trait controlled by multiple genes in multiple organs. Among them, the regulation of lamb number trait by the thyroid gland is a very important part. However, the molecular mechanisms of the thyroid gland in sheep reproduction remain unclear. Here, RNA-seq was used to detect transcriptome expression patterns in the thyroid gland between follicular phase (FP) and luteal phase (LP) in FecB BB (MM) and FecB ++ (ww) STH sheep, respectively, and to identify differentially expressed circRNAs (DECs) associated with reproduction. Bioinformatic analysis of the source genes of these DECs revealed that they can be enriched in multiple signaling pathways involved in the reproductive process of animals. We found that the source genes of these DECs, such as GNAQ, VEGFC, MAPK1, STAT1, and HSD17B7, may play important roles in the reproductive process of animals. To better understand the function of these DECs, we constructed circRNA-miRNA co-expression networks. Dual luciferase reporter assays suggested that a ceRNA regulatory mechanism between circ_0003259-oar-miR-133-TXLNA and circ_0012128-oar-miR-370-3p-FGFR1 may hold. All of these DEC expression profiles in the thyroid gland provide a novel resource for elucidating the regulatory mechanisms underlying STH sheep prolificacy.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China;
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| |
Collapse
|
3
|
MicroRNA-200c Affects Milk Fat Synthesis by Targeting PANK3 in Ovine Mammary Epithelial Cells. Int J Mol Sci 2022; 23:ijms232415601. [PMID: 36555241 PMCID: PMC9779841 DOI: 10.3390/ijms232415601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Milk fat is the foremost nutrient of milk and a vital indicator in evaluating milk quality. Accumulating evidence suggests that microRNAs (miRNAs) are involved in the synthesis of milk fat. The miR-200c is closely related to lipid metabolism, but little is known about its effect on the synthesis of milk fat in MECs of ewes. Herein, the effect of miR-200c on the proliferation of ovine mammary epithelial cells (MECs) and its target relationship with a predicted target gene were investigated. The regulatory effects of miR-200c on the expression of the target genes and the content of triglycerides in ovine MECs were further analyzed. The results revealed that the expression level of miR-200c was differentially expressed in both eight tissues selected during lactation and in mammary gland tissues at different physiological periods. Overexpression of miR-200c inhibited the viability and proliferation of ovine MECs, while inhibition of miR-200c increased cell viability and promoted the proliferation of ovine MECs. Target gene prediction results indicated that miR-200c would bind the 3'UTR region of pantothenate kinase 3 (PANK3). Overexpression of miR-200c reduced the luciferase activity of PANK3, while inhibition of miR-200c increased its luciferase activity. These findings illustrated that miR-200c could directly interact with the target site of the PANK3. It was further found that overexpression of miR-200c reduced the expression levels of PANK3 and, thus, accelerated the synthesis of triglycerides. In contrary, the inhibitor of miR-200c promoted the expression of PANK3 that, thus, inhibited the synthesis of triglycerides in ovine MECs. Together, these findings revealed that miR-200c promotes the triglycerides synthesis in ovine MECs via increasing the lipid synthesis related genes expression by targeting PANK3.
Collapse
|
4
|
Di R, Zhang R, Mwacharo JM, Wang X, He X, Liu Y, Zhang J, Gong Y, Zhang X, Chu M. Characteristics of piRNAs and their comparative profiling in testes of sheep with different fertility. Front Genet 2022; 13:1078049. [PMID: 36568364 PMCID: PMC9768229 DOI: 10.3389/fgene.2022.1078049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
As a novel class of small RNAs, piRNAs are highly expressed in the animal gonads and their main known role is to inhibit transposon activity for ensuring the correctness and integrity of genome. In order to explore the characteristics of piRNAs in sheep testis and their possible regulatory roles on male reproduction, deep sequencing technology was used to sequence small RNAs and identify piRNAs in testes of sheep. The length of piRNAs in sheep testes showed a unimodal distribution between 26 and 31 nt, with a peak at 29 nt. These piRNAs exhibited obvious ping-pong signature and strand specificity. In the genome, they were mainly aligned to CDS, intron, repetitive sequence regions and unannotated regions. Furthermore, in transposon analysis, piRNAs were aligned predominantly to LINE, SINE, and LTR types of retrotransposon in sheep testes, and the piRNAs derived from each type showed obvious ping-pong signature. The piRNA clusters identified in sheep testes were mainly distributed on chromosomes 3, 7, 15, 17, 18 and 20. The results combining semen determination with pathway enrichment analysis implied that differentially expressed piRNAs between the testes of rams with different fertility might participate in spermatogenesis by regulating multiple pathways closely related to stabilization of blood-testis barrier and renewal and differentiation of spermatogonial stem cell. Taken together, the study provided new insights into the characteristics, origin and expression patterns of piRNAs in sheep testes tissue, which would help us better understand the role of piRNAs in sheep reproduction.
Collapse
Affiliation(s)
- Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,School of Advanced Agricultural Sciences, Yiyang Vocational & Technical College, Yiyang, China
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia,Institute of Animal and Veterinary Sciences, SRUC and Center for Tropical Livestock Genetics and Health (CTLGH), Midlothian, United Kingdom
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yiming Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China,*Correspondence: Xiaosheng Zhang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Xiaosheng Zhang, ; Mingxing Chu,
| |
Collapse
|
5
|
Li C, Zhang R, Zhang Z, Ren C, Wang X, He X, Mwacharo JM, Zhang X, Zhang J, Di R, Chu M. Expression characteristics of piRNAs in ovine luteal phase and follicular phase ovaries. Front Vet Sci 2022; 9:921868. [PMID: 36157184 PMCID: PMC9493120 DOI: 10.3389/fvets.2022.921868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs), as a novel class of small non-coding RNAs that have been shown to be indispensable in germline integrity and stem cell development. However, the expressed characteristics and regulatory roles of piRNAs during different reproductive phases of animals remain unknown. In this study, we investigated the piRNAs expression profiles in ovaries of sheep during the luteal phase (LP) and follicular phase (FP) using the Solexa sequencing technique. A total of 85,219 and 1,27,156 piRNAs tags were identified in ovine ovaries across the two phases. Most expressed piRNAs start with uracil. piRNAs with a length of 24 nt or 27–29 nts accounted for the largest proportion. The obvious ping-pong signature appeared in the FP ovary. The piRNA clusters in the sheep ovary were unevenly distributed on the chromosomes, with high density on Chr 3 and 1. For genome distribution, piRNAs in sheep ovary were mainly derived from intron, CDS, and repeat sequence regions. Compared to the LP ovary, a greater number of expressed piRNA clusters were detected in the FP ovary. Simultaneously, we identified 271 differentially expressed (DE) piRNAs between LP and FP ovaries, with 96 piRNAs upregulated and 175 piRNAs downregulated, respectively. Functional enrichment analysis (GO and KEGG) indicated that their target genes were enriched in reproduction-related pathways including oocyte meiosis, PI3K-Akt, Wnt, and TGF-β signaling pathways. Together, our results highlighted the sequence and expression characteristics of the piRNAs in the sheep ovary, which will help us understand the roles of piRNAs in the ovine estrus cycle.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
- Institute of Animal and Veterinary Sciences, Animal and Veterinary Sciences, SRUC and Center for Tropical Livestock Genetics and Health (CTLGH), Midlothian, United Kingdom
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Ran Di
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Mingxing Chu
| |
Collapse
|
6
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
7
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid Transcriptomic Profiling Reveals the Follicular Phase Differential Regulation of lncRNA and mRNA Related to Prolificacy in Small Tail Han Sheep with Two FecB Genotypes. Genes (Basel) 2022; 13:849. [PMID: 35627234 PMCID: PMC9141851 DOI: 10.3390/genes13050849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) accounts for a large proportion of RNA in animals. The thyroid gland has been established as an important gland involved in animal reproduction, however, little is known of its gene expression patterns and potential roles in the sheep. Herein, RNA-Seq was used to detect reproduction-related differentially expressed lncRNAs (DELs) and mRNAs (DEGs) in the follicular phase (FT) FecBBB (MM) and FecB++ (ww) genotypes of Small Tail Han (STH) sheep thyroids. Overall, 29 DELs and 448 DEGs in thyroid between MM and ww sheep were screened. Moreover, GO and KEGG enrichment analysis showed that targets of DELs and DEGs were annotated in biological transitions, such as cell cycle, oocyte meiosis and methylation, which in turn affect reproductive performance in sheep. In addition, we constructed co-expression and networks of lncRNAs-mRNAs. Specifically, XLOC_075176 targeted MYB, XLOC_014695 targeted VCAN, 106991527 targeted CASR, XLOC_075176 targeted KIFC1, XLOC_360232 targeted BRCA2. All these differential lncRNAs and mRNAs expression profiles in the thyroid provide a new resource for elucidating the regulatory mechanism underlying STH sheep prolificacy.
Collapse
Affiliation(s)
- Cheng Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| |
Collapse
|
8
|
Jia R, He X, Ma W, Lei Y, Cheng H, Sun H, Huang J, Wang K. Aptamer-Functionalized Activatable DNA Tetrahedron Nanoprobe for PIWI-Interacting RNA Imaging and Regulating in Cancer Cells. Anal Chem 2019; 91:15107-15113. [PMID: 31691558 DOI: 10.1021/acs.analchem.9b03819] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been reported that PIWI-interacting RNAs (piRNAs) play critical roles in activating invasion and metastasis, evading growth suppressors, and sustaining proliferative signaling of cancer and can be regarded as a novel biomarker candidate. Thus, it is necessary to develop an effective method for imaging and regulating cancer-related piRNAs to diagnose and treat cancers. Herein, we designed aptamer-functionalized activatable DNA tetrahedron nanoprobes (apt-ADTNs) to image and regulate endogenous piRNAs in cancer cells. As proof of concept, overexpressed piRNA-36026 in MCF-7 cells was used for this study. In brief, aptamer AS1411 and piRNA-36026 antisequence with Cy5 fluorescent dye are appended from the DNA tetrahedron; then, a short oligonucleotide with black hole quencher 2 (Q-oligo) is complementary with piRNA-36026 antisequence to quench the fluorescence of Cy5. The apt-ADTNs can recognize the MCF-7 cells through aptamer AS1411, and then enter the cells. Q-oligo is detached from the apt-ADTNs because of the binding between apt-ADTNs and piRNA-36026, leading to the recovery of the Cy5 fluorescence signal. Meanwhile, the hybridization of apt-ADTNs and piRNA-36026 results in down-regulating of dissociative piRNA-36026 in cytoplasm and the subsequent apoptosis of MCF-7 cells. As the achievement of synchronously imaging and regulating piRNA-36026 in MCF-7 cells, we believe that this design holds great promise in application of diagnosis and therapy for cancer.
Collapse
Affiliation(s)
- Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|