1
|
Bernini F, Mancin E, Sartori C, Mantovani R, Vevey M, Blanchet V, Bagnato A, Strillacci MG. Genome-wide association studies for milk production traits in two autochthonous Aosta cattle breeds. Animal 2024; 18:101322. [PMID: 39378607 DOI: 10.1016/j.animal.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Genome-wide association studies (GWASs) are used to identify quantitative trait loci for phenotypic traits of interest. The use of multilocus mixed models allows to correct for population stratification and account for long-range linkage disequilibrium. In this study, GWASs were conducted to identify the genetic bases of milk production (milk yield, protein and fat composition, and yield) in two autochthonous dual-purpose cattle breeds from the Aosta Valley. Using either the breeding values or the deregressed proofs, common significative single nucleotide polymorphisms have been identified for milk yield, protein percentage, and fat percentage. Two major quantitative trait loci regions have been identified on the chromosomes 5 and 14 for the fat percentage, harbouring the MGST1, CYHR1, VPS28, and CPSF1 genes. For the protein percentage, a candidate region has been identified on BTA 6; in this region, the CSN1S1, CSN2, HSTN, CSN3, and RUFY3 genes are annotated. Most of the identified genes have already been associated with milk composition in other studies on cosmopolitan and local cattle. These results show that the genes involved in milk composition quantitative traits in the Aosta cattle are common also in other cattle breeds and they can be further investigated with the use of whole genome sequencing data.
Collapse
Affiliation(s)
- F Bernini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy.
| | - E Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - C Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - R Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - M Vevey
- Associazione Nazionale Bovini di Razza Valdostana, Frazione Favret 5, 11020 Gressan, Italy
| | - V Blanchet
- Associazione Nazionale Bovini di Razza Valdostana, Frazione Favret 5, 11020 Gressan, Italy
| | - A Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - M G Strillacci
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
2
|
Wang T, Ma X, Feng F, Zheng F, Zheng Q, Zhang J, Zhang M, Ma C, Deng J, Guo X, Chu M, La Y, Bao P, Pan H, Liang C, Yan P. Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak. Foods 2024; 13:2953. [PMID: 39335882 PMCID: PMC11431709 DOI: 10.3390/foods13182953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This study explored the polymorphism of the leucine aminopeptidase (LAP3) gene and its relationship with milk quality characteristics in Gannan yak. A cohort of 162 Gannan yak was genotyped utilizing the Illumina Yak cGPS 7K BeadChip, and the identified single nucleotide polymorphisms (SNPs) were evaluated for their association with milk protein, casein, lactose, and fat concentrations. The results showed that four SNPs (g.4494G > A, g.5919A > G, g.8033G > C, and g.15,615A > G) in the LAP3 gene exhibited polymorphism with information content values of 0.267, 0.267, 0.293, and 0.114, respectively. All four SNPs were in Hardy-Weinberg equilibrium (p > 0.05). The g.4494G > A and g.5919A > G SNPs were significantly associated with protein content (p < 0.05), with homozygous genotypes showing significantly higher protein content than heterozygous genotypes (p < 0.05). The g.8033G > C SNP was significantly associated with casein content, protein content, non-fat solids, and acidity (p < 0.05), with the CC genotype having significantly higher casein, protein, and non-fat solids content than the GG and GC genotypes (p < 0.05). The g.15,615A > G SNP was significantly associated with average fat globule diameter (p < 0.05). In general, the mutations within the LAP3 gene demonstrated a positive impact on milk quality traits in Gannan yak, with mutated genotypes correlating with enhanced milk quality. These results indicate that the LAP3 gene could be a significant or candidate gene affecting milk quality traits in Gannan yak and offer potential genetic markers for molecular breeding programs in this species.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Fen Feng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Fei Zheng
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Qingbo Zheng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Minghao Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chaofan Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Jingying Deng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 931100, China
| |
Collapse
|
3
|
Su M, Lin X, Xiao Z, She Y, Deng M, Liu G, Sun B, Guo Y, Liu D, Li Y. Genome-Wide Association Study of Lactation Traits in Chinese Holstein Cows in Southern China. Animals (Basel) 2023; 13:2545. [PMID: 37570353 PMCID: PMC10417049 DOI: 10.3390/ani13152545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Xiaojue Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Zupeng Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
4
|
Persichilli C, Senczuk G, Mastrangelo S, Marusi M, van Kaam JT, Finocchiaro R, Di Civita M, Cassandro M, Pilla F. Exploring genome-wide differentiation and signatures of selection in Italian and North American Holstein populations. J Dairy Sci 2023; 106:5537-5553. [PMID: 37291034 DOI: 10.3168/jds.2022-22159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/07/2023] [Indexed: 06/10/2023]
Abstract
Among Italian dairy cattle, the Holstein is the most reared breed for the production of Parmigiano Reggiano protected designation of origin cheese, which represents one of the most renowned products in the entire Italian dairy industry. In this work, we used a medium-density genome-wide data set consisting of 79,464 imputed SNPs to study the genetic structure of Italian Holstein breed, including the population reared in the area of Parmigiano Reggiano cheese production, and assessing its distinctiveness from the North American population. Multidimensional scaling and ADMIXTURE approaches were used to explore the genetic structure among populations. We also investigated putative genomic regions under selection among these 3 populations by combining 4 different statistical methods based either on allele frequencies (single marker and window-based) or extended haplotype homozygosity (EHH; standardized log-ratio of integrated EHH and cross-population EHH). The genetic structure results allowed us to clearly distinguish the 3 Holstein populations; however, the most remarkable difference was observed between Italian and North American stock. Selection signature analyses identified several significant SNPs falling within or closer to genes with known roles in several traits such as milk quality, resistance to disease, and fertility. In particular, a total of 22 genes related to milk production have been identified using the 2 allele frequency approaches. Among these, a convergent signal has been found in the VPS8 gene which resulted to be involved in milk traits, whereas other genes (CYP7B1, KSR2, C4A, LIPE, DCDC1, GPR20, and ST3GAL1) resulted to be associated with quantitative trait loci related to milk yield and composition in terms of fat and protein percentage. In contrast, a total of 7 genomic regions were identified combining the results of standardized log-ratio of integrated EHH and cross-population EHH. In these regions candidate genes for milk traits were also identified. Moreover, this was also confirmed by the enrichment analyses in which we found that the majority of the significantly enriched quantitative trait loci were linked to milk traits, whereas the gene ontology and pathway enrichment analysis pointed to molecular functions and biological processes involved in AA transmembrane transport and methane metabolism pathway. This study provides information on the genetic structure of the examined populations, showing that they are distinguishable from each other. Furthermore, the selection signature analyses can be considered as a starting point for future studies in the identification of causal mutations and consequent implementation of more practical application.
Collapse
Affiliation(s)
- Christian Persichilli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy.
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo (PA), Italy
| | - Maurizio Marusi
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Jan-Thijs van Kaam
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Raffaella Finocchiaro
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| | - Martino Cassandro
- National Association of Italian Holstein, Brown and Jersey Breeders, Via Bergamo, 292, 26100 Cremona (CR), Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via A. De sanctis, 86100 Campobasso (CB), Italy
| |
Collapse
|
5
|
Bekele R, Taye M, Abebe G, Meseret S. Genomic Regions and Candidate Genes Associated with Milk Production Traits in Holstein and Its Crossbred Cattle: A Review. Int J Genomics 2023; 2023:8497453. [PMID: 37547753 PMCID: PMC10400298 DOI: 10.1155/2023/8497453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Genome-wide association studies (GWAS) are a powerful tool for identifying genomic regions and causative genes associated with economically important traits in dairy cattle, particularly complex traits, such as milk production. This is possible due to advances in next-generation sequencing technology. This review summarized information on identified candidate genes and genomic regions associated with milk production traits in Holstein and its crossbreds from various regions of the world. Milk production traits are important in dairy cattle breeding programs because of their direct economic impact on the industry and their close relationship with nutritional requirements. GWAS has been used in a large number of studies to identify genomic regions and candidate genes associated with milk production traits in dairy cattle. Many genomic regions and candidate genes have already been identified in Holstein and its crossbreds. Genes and single nucleotide polymorphisms (SNPs) that significantly affect milk yield (MY) were found in all autosomal chromosomes except chromosomes 27 and 29. Half of the reported SNPs associated with fat yield and fat percentage were found on chromosome 14. However, a large number of significant SNPs for protein yield (PY) and protein percentage were found on chromosomes 1, 5, and 20. Approximately 155 SNPs with significant influence on multiple milk production traits have been identified. Several promising candidate genes, including diacylglycerol O-acyltransferase 1, plectin, Rho GTPase activating protein 39, protein phosphatase 1 regulatory subunit 16A, and sphingomyelin phosphodiesterase 5 were found to have pleiotropic effects on all five milk production traits. Thus, to improve milk production traits it is of practical relevance to focus on significant SNPs and pleiotropic genes frequently found to affect multiple milk production traits.
Collapse
Affiliation(s)
- R. Bekele
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
- Department of Animal Science, College of Agriculture and Natural Resource Sciences, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - M. Taye
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - G. Abebe
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - S. Meseret
- Livestock Genetics, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Yu L, Fu J, Shen C. Ubiquitin specific peptidase 47 promotes proliferation of lung squamous cell carcinoma. Genes Genomics 2022; 44:721-731. [PMID: 35254655 DOI: 10.1007/s13258-022-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ubiquitin specific peptidase 47 (USP47) is a kind of deubiquitinase, which has been reported to play oncogenic roles in several malignancies including colorectal cancer and breast cancer. OBJECTIVE Here we aimed to investigate the clinical significance of USP47 in lung squamous cell carcinoma (LUSC). METHODS We retrospectively enrolled a cohort of LUSC patients who underwent surgical resection in our hospital (n = 280) and conducted immunohistochemistry staining for their tumor tissues targeting USP47. The correlations between USP47 expression and clinicopathological characteristics were evaluated by Chi-square test. Univariate and multivariate analyses were conducted to assess the prognostic predictive role of USP47 in LUSC. Cell lines and mice models were utilized to explore the tumor-related functions of USP47 in vitro and in vivo, respectively. RESULTS Among the 280 cases, there were 127 cases classified as high-USP47 expression and 153 cases with low-USP47 expression. Statistical analyses revealed that higher USP47 expression was independently correlated with larger tumor size, advanced T stage, and unfavorable prognosis. Knockdown of USP47 by shRNA resulted in impaired proliferation of LUSC cell lines and reduced nucleus beta-catenin level. Furthermore, xenograft assays demonstrated that silencing USP47 can inhibit LUSC tumor growth in vivo. CONCLUSION Our research established a novel tumor-promoting effect and prognostic predictive role of USP47 in LUSC, thereby providing evidence for further therapeutic development.
Collapse
Affiliation(s)
- Lin Yu
- Dalian Medical University, Dalian, 116044, China.,Department of Thoracic Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, China
| | - Jiayu Fu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital of Shenyang Medical College, 64 Qishan West Road, Shenyang, 110035, China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, Second Affiliated Hospital of Shenyang Medical College, 64 Qishan West Road, Shenyang, 110035, China.
| |
Collapse
|
7
|
Fatahiyan L, Manesh AT, Abadi NM. Homo pair formations of thiobarbituric acid: DFT calculations and QTAIM analysis. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Homo pair formations of thiobarbituric acid (TBA) were investigated in this work by performing density functional theory (DFT) calculations and the quantum theory of atoms in molecule (QTAIM) analysis. Different types of interactions including N–H . . . O, N–H . . . S, C–H . . . O, and C–H . . . S were involved in formations of five models of homo pair of TBA. In this regard, the results of energy strength and QTAIM features indicated that the model with two N–H . . . O interacting bond (D1) was placed at the highest stability and the model with one N–H . . . O and one C–H . . . S interacting bonds (D5) was placed at the lowest stability. Existence of hydrogen bond (HB) interactions in the models were confirmed based on the obtained results. As a consequence, self-interaction of TBA, as an initiator of pharmaceutical compounds production, was investigated in this work in addition to recognition of existence of different types of interactions.
Collapse
Affiliation(s)
- Leila Fatahiyan
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taghva Manesh
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Masan Abadi
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Cao Y, El-Shorbagy M, Sharma K, Alamri S, Rajhi AA, Anqi AE, El-Shafay A. Amino acid functionalized boron nitride nanotubes as an effective nanocarriers for Thiotepa anti-cancer drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
The sorption of Tebuconazole and Linuron from an Aqueous Environment with a Modified Sludge-Based Biochar: Effect, Mechanisms, and Its Persistent Free Radicals Study. J CHEM-NY 2021. [DOI: 10.1155/2021/2912054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the sludge-based biochar was prepared and utilized as an adsorbent for the removal of two commonly used pesticides in agriculture, namely tebuconazole (Teb) and linuron (Lin) in an aqueous solution. The main contributing factors such as biochar preparation conditions, persistent free radicals as well as contact time, agitation speed, biochar dose, temperature, and pH were investigated. The physicochemical properties were characterized by SEM + EDS, FTIR, BET, EPR, etc. The results showed that the maximum adsorption capacities based on the Langmuir model was 7.8650 mg g−1 for tebuconazole and that based on Freundlich model was 9.0645 mg·g-1 for linuron at 25°C. The pseudo-second-order kinetic equations were all fitted well to the kinetic process of the adsorption of the two pesticides with all R2 ≥ 0.915. The maximum values of tebuconazole adsorption capacity occur at pH = 3. Meanwhile, linuron was not affected by pH. Both Cr6+ (r = −0.793∗∗/ −0.943∗∗) and humic acid (r = −0.798∗∗/ −0.947∗∗) significantly inhibited the adsorption amount of tebuconazole and linuron onto the biochar. Electron spin resonance signals (ESR) indicated that environmentally persistent radicals (EPFRs) are preferentially formed at lower pyrolysis temperatures and lower transition metal concentrations. The g-factors for BC400, BC600, BCF400, and BCF600 were 2.0036, 2.0035, 2.0034, and 2.0033, respectively, indicating that the EPFRs mainly have a carbon-centered structure with adjacent oxygen atoms. In addition, to close to the actual situation, natural water (from YanTai) was collected to simulate pesticide contamination. This study demonstrates that sludge-based biochar can achieve efficient removal of tebuconazole and linuron in aqueous environment in a short period of time with no secondary environmental risk especially on the waste activated sludge.
Collapse
|