1
|
da Silva JMS, Almeida AMDS, Borsanelli AC, de Athayde FRF, Nascente EDP, Batista JMM, Gouveia ABVS, Stringhini JH, Leandro NSM, Café MB. Intestinal Microbiome Profiles in Broiler Chickens Raised with Different Probiotic Strains. Microorganisms 2024; 12:1639. [PMID: 39203481 PMCID: PMC11357238 DOI: 10.3390/microorganisms12081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The composition of the intestinal microbiota can influence the metabolism and overall functioning of avian organisms. Therefore, the objective of this study was to evaluate the effect of three different probiotics and an antibiotic on the microbiomes of 1.400 male Cobb® broiler raised for 42 days. The experiment was conducted with the following treatments: positive control diet (basal diet + antibiotic); negative control diet (basal diet without antibiotic and without probiotic); basal diet + Normal Avian Gut Flora (NAGF); basal diet + multiple colonizing strain probiotics (MCSPs); and basal diet + non-colonizing single strain probiotics (NCSSPs). The antibiotic (enramycin-antibiotic growth promoter) and probiotics were administered orally during all experiment (1 to 42 days), mixed with broiler feed. To determine the composition of the microbiota, five samples of ileal digesta were collected from 42-day-old chickens of each experimental group. The alpha and beta diversity of the ileal microbiota showed differences between the groups. MCSPs presented greater richness and uniformity compared to the positive control, negative control, and NCSSPs treatments, while the negative control exhibited greater homogeneity among samples than NCSSPs. MCSPs also showed a higher abundance of the genus Enterococcus. There were differences between the groups for low-abundance taxa (<0.5%), with NAGF showing higher levels of Delftia, Brevibacterium, and Bulleidia. In contrast, NCSSPs had a higher abundance of Ochrobactrum, Rhodoplanes, and Nitrospira. It was concluded that the treatments analyzed in this study induced modulations in the ileal microbiota of the chickens examined.
Collapse
Affiliation(s)
- Julia Marixara Sousa da Silva
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Ana Maria De Souza Almeida
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Ana Carolina Borsanelli
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | | | - Eduardo de Paula Nascente
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - João Marcos Monteiro Batista
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Alison Batista Vieira Silva Gouveia
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - José Henrique Stringhini
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Nadja Susana Mogyca Leandro
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Marcos Barcellos Café
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| |
Collapse
|
2
|
Wang M, Ma W, Wang C, Li D. Lactococcus G423 improve growth performance and lipid metabolism of broilers through modulating the gut microbiota and metabolites. Front Microbiol 2024; 15:1381756. [PMID: 38939183 PMCID: PMC11210191 DOI: 10.3389/fmicb.2024.1381756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
This study aimed to explore whether Lactococcus G423 could improve growth performance and lipid metabolism of broilers by the modulation of gut microbiota and metabolites. A total of 640 1-day-old AA broilers were randomly divided into 4 groups [Control (CON), Lac_L, Lac_H, and ABX]. Average daily gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR), breast muscle, thigh muscle, and abdominal fat pad were removed and weighed at 42 days of age. Serum was obtained by centrifuging blood sample from jugular vein (10 mL) for determining high-density lipoprotein (HDL), total cholesterol (TC), low-density lipoprotein (LDL), and triglyceride (TG) using ELISA. The ileal contents were harvested and immediately frozen in liquid nitrogen for 16S rRNA and LC-MS analyses. Then, the results of 16S rRNA analysis were confirmed by quantitative polymerase chain reaction (qPCR). Compared with the CON group, FCR significantly decreased in the Lac_H group (p < 0.05) in 1-21 days; ADG significantly increased and FCR significantly decreased in the Lac_H group (p < 0.05) in 22-42 days. 42 days weight body and ADG significantly increased in the Lac_H group (p < 0.05) in 42 days. Abdominal fat percentage was significantly decreased by Lactococcus G423 (p < 0.05), the high dose of Lactococcus G423 significantly decreased the serum of TG, TC, and LDL level (p < 0.05), and the low dose of Lactococcus G423 significantly decreased the serum of TG and TC level (p < 0.05). A significant difference in microbial diversity was found among the four groups. Compared with the CON group, the abundance rates of Firmicutes and Lactobacillus in the Lac_H group were significantly increased (p < 0.05). The global and overview maps and membrane transport in the Lac_L, Lac_H, and ABX groups significantly changed versus those in the CON group (p < 0.05). The results of LC-MS demonstrated that Lactococcus could significantly improve the levels of some metabolites (6-hydroxy-5-methoxyindole glucuronide, 9,10-DiHOME, N-Acetyl-l-phenylalanine, and kynurenine), and these metabolites were involved in four metabolic pathways. Among them, the pathways of linoleic acid metabolism, phenylalanine metabolism, and pentose and glucuronate interconversions significantly changed (p < 0.05). Lactococcus G423 could ameliorate growth performance and lipid metabolism of broilers by the modulation of gut microbiota and metabolites.
Collapse
Affiliation(s)
| | | | | | - Desheng Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
3
|
Wegner M, Kokoszyński D, Krajewski K, Żurek A. Effect of vaccination program on immune response, production performance, and carcass composition of Ross 308 broiler chickens. Poult Sci 2023; 102:102918. [PMID: 37566969 PMCID: PMC10432859 DOI: 10.1016/j.psj.2023.102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of this study was to compare the effect of 2 different vaccination programs using vaccines against infection bronchitis virus (IBV) and avian metapneumovirus (aMPV) on the humoral immune response, production performance, carcass weight and composition, and the percentage of selected internal organs. During the rearing of broiler chickens, blood was collected for serum samples from randomly selected birds from each experimental group on d 1, 21, 28, and 38. Geometric mean titer (GMT) values were determined for the aforementioned diseases using serological ELISA tests, performed during routine veterinary inspections. During rearing, body weight, mortality, and feed consumption were monitored, allowing the calculation of feed consumption per kilogram of body weight gain (FCR) and the European Production Index (EPI). At the end of rearing, 20 chickens were selected for dissection, 10 birds from each group. After slaughter, the weight of the eviscerated carcass was determined, and the percentages of carcass parts and selected internal organs in the body weight were calculated. The vaccination program exerted a significant (P<0.05) effect on body weight on days 14, 21, 28, 35 and 42, the percentage of wings in the carcass and the proportion (%) of heart, liver and spleen in body weight. ELISA showed no significant effect of the vaccination program on the anti-IBV serological response, and no negative effect of covaccination against both diseases on the anti-aMPV serological response.
Collapse
Affiliation(s)
| | - Dariusz Kokoszyński
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland.
| | | | | |
Collapse
|
4
|
Liu L, Li L, Li C, Wang H, Zhang X, Ren Q, Zhang H, Jin N, Li C, Zhao C. Effects of Lactiplantibacillus plantarum LPJZ-658 Supplementation on the Production, Meat Quality, Intestinal Morphology, and Cecal Microbiota of Broilers Chickens. Microorganisms 2023; 11:1549. [PMID: 37375050 DOI: 10.3390/microorganisms11061549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the effects of L. plantarum LPJZ-658 on the production, meat quality, intestinal morphology, and cecal microbiota of broilers. White-feathered broilers (1 day old, n = 600) were randomly assigned to two groups and raised for six weeks. The individuals in the LPJZ-658 group were supplemented with 2.6 × 109 cfu/g LPJZ-658. The growth performance, meat quality, intestinal epithelium morphology, and cecal microbiota were observed. The results showed that the average daily gain, average daily feed intake, and feed conversion ratio of broilers in the LPJZ-658 group were significantly improved. In addition, the LPJZ-658 groups had a higher thigh muscle (TM) yield, TM color, TMpH24h, breast muscle (BM) pH24h, and BM color24h, while the BM cooking loss was significantly lower than the CON group. Moreover, supplementation with LPJZ-658 increased ileum and cecum length, duodenum and ileum villus height, and ileum villus height/crypt depth ratio. Furthermore, 16S rRNA sequencing revealed the dietary LPJZ-658 supplementation modulated the diversity and composition of cecal microflora. At the phylum level, the relative abundances of Proteobacteria, Actinobacteria, Verrucomicrobiota, and Acidobacteriota were significantly higher. In addition, LPJZ-658 substantially decreased the genus relative abundances of Streptococcus, Veillonella, Neisseria, and Haemophilus compared with the CON group and facilitated the growth and colonization of beneficial cecal bacteria, such as OBacteroides, Phascolarctobacterium, Bacillus, and Akkermansia. It was concluded that LPJZ-658 supplementation significantly increased growth production, improved meat quality and intestinal status, and modulated the intestinal microbiota in the broilers.
Collapse
Affiliation(s)
- Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Haiyang Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xiufeng Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Qingdan Ren
- Jilin Provincial Animal Husbandry General Station, Changchun 130062, China
| | - Heping Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010010, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
5
|
Janocha A, Milczarek A, Kosmalski M, Gajownik-Mućka P, Radzikowski D. Effect of Feed Additives Supplementation on the Growth Performance, Gastrointestinal Tract Characteristics, and Carcass Composition in Turkey Hens. Animals (Basel) 2022; 12:ani12243464. [PMID: 36552383 PMCID: PMC9774150 DOI: 10.3390/ani12243464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
In order to increase growth performance and carcass composition, including meat quality, as demanded by modern customers, alternative feed additives are sought after as a result of the withdrawal of antibiotics employed as growth promoters in poultry feeding. Therefore, we conducted a study to see how effective three feed additives added to the diets and water of turkey hens were. The experiment consisted of 200 Big 6 turkey hens divided into two equinumerous groups (C and E), with five subgroups in each. The 14-week-long growth performance study comprised five feeding periods. Both groups of birds were fed complete feed rations with mineral and vitamin supplements. The factor differentiating the groups were effective microorganisms and Humokarbowit added to the birds' diets and garlic extract added to the drinking water in the experimental group (E) only. It was demonstrated that the included feed additives in the diets and water of turkey hens significantly increased (by 10%) the FBW and decreased (by 14%) the FCR throughout the rearing period. Birds from the E group scored significantly higher (by 3.6%) on the dressing percentage, and their muscularity and fattening grade were improved. Turkey fed rations containing the evaluated feed additives had a smaller share of the gastrointestinal tract in the body weight and a shorter duodenum and caecum (p ≤ 0.05). The muscles of turkey hens from group E featured a lower pH24 and were of lighter colour (p ≤ 0.05). To sum up, the use of effective microorganisms and Humokarbowit in the diets and garlic extract in the drinking water of turkey hens should be recommended in view of improved growth performance and carcass composition.
Collapse
|
6
|
Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022; 12:biom12101443. [PMID: 36291652 PMCID: PMC9599591 DOI: 10.3390/biom12101443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.
Collapse
|
7
|
Kokoszyński D, Żochowska-Kujawska J, Kotowicz M, Sobczak M, Piwczyński D, Stęczny K, Majrowska M, Saleh M. Carcass characteristics and selected meat quality traits from commercial broiler chickens of different origin. Anim Sci J 2022; 93:e13709. [PMID: 35289032 DOI: 10.1111/asj.13709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
The aim of the study was to compare carcass and meat quality traits in 42-day-old Ross 308 and Cobb 500 broiler chickens. Forty carcasses were studied. Acidity (pH24 ) and electrical conductivity (EC24 ) of pectoralis major muscle and drumstick were determined 24 h postmortem. After carcass cutting, samples of breast and leg meat were collected for determination of quality traits. Broiler genotype had a significant effect on abdominal fat content in carcass and on water, protein, fat, sodium, and magnesium content in breast meat. Bird origin had an effect on the lightness, yellowness, horizontal diameter of muscle fiber, horizontal:vertical (H:V) diameter ratio, and most textural characteristics of pectoralis major muscle, as well as on the pH (pH24 ), electrical conductivity (EC24 ), and yellowness (b*) of leg muscles. Sex of birds had a significant effect on carcass weight, water, fat and collagen content, L*, a*, b* color attributes, and chewiness and gumminess of breast meat and on water and protein content in leg muscles. The present study provided information on the differences in carcass and meat quality between Ross 308 and Cobb 500 broiler chickens.
Collapse
Affiliation(s)
- Dariusz Kokoszyński
- Department of Animal Breeding and Nutrition, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | | | - Marek Kotowicz
- Department of Meat Science, West Pomeranian University of Technology, Szczecin, Poland
| | - Małgorzata Sobczak
- Department of Meat Science, West Pomeranian University of Technology, Szczecin, Poland
| | - Dariusz Piwczyński
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Kamil Stęczny
- Department of Animal Breeding and Nutrition, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Michalina Majrowska
- Department of Animal Breeding and Nutrition, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Mohamed Saleh
- Department of Poultry Production, Sohag University, Sohag, Egypt
| |
Collapse
|
8
|
Survival of Escherichia coli in Airborne and Settled Poultry Litter Particles. Animals (Basel) 2022; 12:ani12030284. [PMID: 35158607 PMCID: PMC8833766 DOI: 10.3390/ani12030284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Airborne Escherichia coli (E. coli) in the poultry environment can migrate inside and outside houses through air movement. The airborne E. coli, after settling on surfaces, could be re-aerosolized or picked up by vectors (e.g., caretakers, rodents, transport trucks) for further transmission. To assess the impacts of airborne E. coli transmission among poultry farms, understanding the survivability of the bacteria is necessary. The objective of this study is to determine the survivability of airborne E. coli, settled E. coli, and E. coli in poultry litter under laboratory environmental conditions (22–28 °C with relative humidity of 54–63%). To determine the survivability of airborne E. coli, an AGI-30 bioaerosol sampler (AGI-30) was used to collect the E. coli at 0 and 20 min after the aerosolization. The half-life time of airborne E. coli was then determined by comparing the number of colony-forming units (CFUs) of the two samplings. To determine the survivability of settled E. coli, four sterile Petri dishes were placed on the chamber floor right after the aerosolization to collect settled E. coli. The Petri dishes were then divided into two groups, with each group being quantified for culturable E. coli concentrations and dust particle weight at 24-h intervals. The survivability of settled E. coli was then determined by comparing the number of viable E. coli per milligram settled dust collected in the Petri dishes in the two groups. The survivability of E. coli in the poultry litter sample (for aerosolization) was also determined. Results show that the half-life time of airborne E. coli was 5.7 ± 1.2 min. The survivability of E. coli in poultry litter and settled E. coli were much longer with the half-life time of 15.9 ± 1.3 h and 9.6 ± 1.6 h, respectively. In addition, the size distribution of airborne E. coli attached to dust particles and the size distribution of airborne dust particles were measured by using an Andersen impactor and a dust concentration monitor (DustTrak). Results show that most airborne E. coli (98.89% of total E. coli) were carried by the dust particles with aerodynamic diameter larger than 2.1 µm. The findings of this study may help better understand the fate of E. coli transmitted through the air and settled on surfaces and evaluate the impact of airborne transmission in poultry production.
Collapse
|
9
|
Overview of the Use of Probiotics in Poultry Production. Animals (Basel) 2021; 11:ani11061620. [PMID: 34072694 PMCID: PMC8230106 DOI: 10.3390/ani11061620] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Probiotics are feed additives that have gained popularity in poultry production following the ban of antibiotic growth promoters (AGP). They are one of the more universal feed additives and can be easily combine with other additives. Probiotics, above all, have many advantages, including stimulation of the host microflora or immunomodulation. The statement “immunity comes from the intestines” has become more important in the poultry industry because probiotics have proven helpful in the fight against diseases of bacterial origin and against zoonoses. Positive effects on the organism have already been studied at the cellular level, where probiotics were responsible for changes in gene expression, leading to alleviation of heat stress. In addition to the health benefits, the utility value of the animals increases. The numerous advantages are overshadowed by a few drawbacks, which include the possibility of lowering semen quality in roosters and the diversity of production processes affecting the persistence of the probiotic. In addition to bird health, probiotics have improved the taste and quality of poultry products. Future prospects are promising as scientists are working to maximize the positive effects of probiotics by increasing the integrity of probiotics within the bird organism, taking into account, among others, bacterial metabolites. Abstract In recent years, probiotics have become more popular in the world of dietary supplements and feed additives within the poultry industry, acting as antibiotic substitutes. Above all, probiotics are universal feed additives that can be used in conjunction with other additives to promote improved performance and health. Their positive effects can be observed directly in the gastrointestinal tract and indirectly in immunomodulation of the poultry immune system. Nutritional effects seen in flocks given probiotics include increased laying and egg quality, increased daily increments, and improved feed conversion ratio (FCR). There has also been an improvement in the quality of meat. This suggests producers can improve production results through the use of probiotics. In addition to these production effects, bird immunity is improved by allowing the organism to better protect itself against pathogens and stress. The lack of accuracy in the formulation of non-European preparations needs to be further developed due to unknown interactions between probiotic bacteria strains as well as their metabolites. The versatility of probiotics and the fact that the bacteria used in their production are an integral part of animal digestive tracts make them a safe feed additives. Despite restrictions from the European Union, probiotics have potential to improve production and health within the poultry industry and beyond. The following article will review the use of probiotics in poultry production.
Collapse
|
10
|
Effective Microorganisms (EM) Improve Internal Organ Morphology, Intestinal Morphometry and Serum Biochemical Activity in Japanese Quails under Clostridium perfringens Challenge. Molecules 2021; 26:molecules26092786. [PMID: 34066903 PMCID: PMC8125893 DOI: 10.3390/molecules26092786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
The effect of effective microorganisms (EM) on internal organ morphology, intestinal morphometry, and serum biochemical activity in Japanese quails under Clostridium perfringens challenge was determined. After 30 days of EM addition, one group of quails was orally inoculated with Clostridium perfringens. The second group did not receive EM and was inoculated with C. perfringens. In the gut, EM supplementation reduced the number of lesions, enhanced gut health, and protected the mucosa from pathogenic bacteria. EM showed an anti-inflammatory effect and fewer necrotic lesions in villi. In the internal organs, EM showed a protective effect against a typical lesion of C. perfringens infection. Necrosis and degeneration of the hepatocytes, necrosis of bile ducts, and bile duct proliferation were more severe in the infected group without EM. Morphometric evaluation showed significantly higher villi in the jejunum after EM addition. A greater crypt depth was observed in the C. perfringens group. Biochemical analysis of the blood indicated lower cholesterol on the 12th day of the experiment and between-group differences in total protein, lactate dehydrogenase (LDH), and albumin levels in the EM group. Further studies are needed to improve EM activity against pathologic bacteria as a potential alternative to antibiotics and to develop future natural production systems.
Collapse
|
11
|
RNA-Seq transcriptome analysis of ileum in Taiping chicken supplemented with the dietary probiotic. Trop Anim Health Prod 2021; 53:131. [PMID: 33462736 DOI: 10.1007/s11250-021-02566-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Taiping chicken is indigenous chickens (Gallus gallus domesticus), which was one of China's excellent poultry species. As the problems caused by the overuse of antibiotics become more and more concern, people begin to look for ways to replace them. Among them, probiotics and their preparations are the research hotspot to replace antibiotics. Probiotics can promote the absorption of nutrients, improve the ratio of meat to meat, resist and prevent diseases, and improve the intestinal tissue morphology. Here, we performed transcriptome profiling of Taiping chicken ileum which was given probiotics by using the Hiseq™ 2500 sequencing platform. A total of 18 genes were differentially expressed in the ileum under control group and probiotics group. Thirteen genes were upregulated with a range of fold change from 1.02 to 8.61, and 5 were downregulated with a range of fold change from - 1.06 to - 2.29. Ten of the differently expressed genes were further validated by qRT-PCR. In addition, Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these differentially expressed genes were mainly enriched to bile secretion, alpha-linolenic acid metabolism, linoleic acid metabolism, ether lipid metabolism, and arachidonic acid metabolism. This study will help us to understand the role of probiotics in indigenous chicken production and provide theoretical basis for the genetic development of indigenous chickens.
Collapse
|