1
|
Yang Y, Li X, Wang Y, Wang J, Liu G, Geng Z, Wu R, Lian S, Wang J. Estrogen and glucocorticoid promote the lactoferrin synthesis and secretion ability of bovine mammary epithelial cells through ER and GR signaling pathways. Int J Biol Macromol 2025; 307:140636. [PMID: 39904446 DOI: 10.1016/j.ijbiomac.2025.140636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/09/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Lactoferrin (LF) is an innate immunity glycoprotein with antibacterial, anti-inflammatory, antiviral, anti-tumor, and autoantibody activity-enhancing properties. Steroid hormones are essential for development and lactation in the dairy cow mammary gland, and act through binding to receptors that drive gene transcription. However, it remains unclear whether steroid hormone receptors play roles in LF synthesis in bovine mammary epithelial cells (BMECs). In this study, we investigated the direct effects of estrogen and glucocorticoid on LF synthesis and secretion by BMECs. The results show that treatment of BMECs with estrogen (17-β-estradiol, E2) and glucocorticoid (hydrocortisone) significantly promoted cell proliferation. Furthermore, E2 or hydrocortisone increased the expression levels of estrogen receptor (ER) and glucocorticoid receptor (GR), and stimulated the synthesis and secretion of LF in BMECs. Treatment of BMECs with various inhibitors (fulvestrant, mifepristone, and pimozide) decreased LF gene transcript and LF protein levels. It was concluded that fulvestrant and mifepristone inhibit LF transcription and translation via inhibiting ER and GR, respectively. Our data indicate that E2 and hydrocortisone regulate LF protein synthesis through the ER and GR signaling pathways. These results provide new information about the regulation of the synthesis of functional proteins in milk.
Collapse
Affiliation(s)
- Yuejie Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Xinru Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Yandi Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Jianhui Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Guichi Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Zijian Geng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China; College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China.
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China.
| |
Collapse
|
2
|
Mao T, Chen B, Wei W, Chen G, Liu Z, Wu L, Li X, Pathak JL, Li J. AutoDock and molecular dynamics-based therapeutic potential prediction of flavonoids for primary Sjögren's syndrome. Heliyon 2024; 10:e33860. [PMID: 39027572 PMCID: PMC11255588 DOI: 10.1016/j.heliyon.2024.e33860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Primary Sjögren's Syndrome (pSS) is a systemic autoimmune disease that leads to reduced saliva production, primarily affecting women due to estrogen deficiency. The estrogen receptor α (ERα) plays a crucial role in mediating the expression of the aquaporin 5 (AQP5) gene through the estrogen response element-dependent signaling pathway, making ERα a key drug target for pSS. Several flavonoids have been reported to have the potential to treat pSS. This study aimed to screen and compare flavonoids binding to ERα using AutoDock, providing a basis for treating pSS with flavonoids. The estrogenic potential of six representative flavonoids was examined in this study. Molecular docking revealed that the binding energy of all six flavonoids to ERα was less than -5.6 kcal/mol. Apigenin, naringenin, and daidzein were the top three flavonoids with even lower binding energies of -7.8, -8.09, and -8.59 kcal/mol, respectively. Similar to the positive control estradiol, apigenin, naringenin, and daidzein showed hydrogen bond interactions with GLU353, GLY521, and HIS524 at the active site. The results of luciferase reporter assays demonstrated that apigenin, naringenin, and daidzein significantly enhanced the transcription of estrogen receptor element (ERE) in the PGL3/AQP5 promoter. Furthermore, molecular dynamics simulations using GROMACS for a time scale of 100 ns revealed relatively stable binding of apigenin-ERα, naringenin-ERα, and daidzein-ERα. Mechanistically, homology modeling indicated that GLU353, GLY521, and HIS524 were the key residues of ERα exerting an estrogenic effect. The therapeutic effect of apigenin on dry mouth in pSS models was further validated. In conclusion, these results indicate the estrogenic and pSS therapeutic potential of apigenin, naringenin, and daidzein.
Collapse
Affiliation(s)
- Tianjiao Mao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Bo Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Wei Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Guiping Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Zhuoyuan Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Lihong Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510140, China
| | - Janak L. Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| | - Jiang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, 510140, China
| |
Collapse
|
3
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
4
|
Shao Y, Xu J, Wang M, Ren Y, Wei M, Tian B, Luo J, Loor JJ, Shi H. Preliminary Results on the Effects of Soybean Isoflavones on Growth Performance and Ruminal Microbiota in Fattening Goats. Animals (Basel) 2024; 14:1188. [PMID: 38672337 PMCID: PMC11047704 DOI: 10.3390/ani14081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Soybean isoflavones (SIFs), a group of secondary metabolites, have antioxidant, anti-inflammatory, and hormone-like activities. Supplementation with SIFs in the diet was reported to promote lactation performance in ruminants. The present study was performed to further decipher the effect of various concentrations of SIFs on growth and slaughter performance, serum parameters, meat quality, and ruminal microbiota in fattening goats. After a two-week acclimation, a total of 27 5-month-old Guanzhong male goats (18.29 ± 0.44 kg) were randomly assigned to control (NC), 100 mg/d SIF (SIF1), or 200 mg/d SIF (SIF2) groups. The experimental period lasted 56 days. The weight of the large intestine was greater (p < 0.05) in the SIF1 and SIF2 groups compared with the NC group. Meat quality parameters indicated that SIF1 supplementation led to lower (p < 0.05) cooking loss and shear force (0.05 < p < 0.10). The 16S rRNA sequencing analysis demonstrated that SIF1 supplementation led to lower (p < 0.05) proportions of Papillibacter and Prevotellaceae_UCG-004 but greater (p < 0.05) CAG-352 abundance in the rumen; these responses might have contributed to the improvement in production performance. In conclusion, meat quality and ruminal microbiome could be manipulated in a positive way by oral supplementation with 100 mg/d of SIFs in fattening goats. Thus, this study provides new insights and practical evidence for the introduction of SIFs as a novel additive in goat husbandry.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Junhong Xu
- Weinan Agricultural Products Quality and Safety Inspection and Testing Center, Weinan 714000, China;
| | - Mengyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Yalun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Manhong Wei
- College of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China;
| | - Bowen Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| |
Collapse
|
5
|
Bolt MJ, Oceguera J, Singh PK, Safari K, Abbott DH, Neugebauer KA, Mancini MG, Gorelick DA, Stossi F, Mancini MA. Characterization of flavonoids with potent and subtype-selective actions on estrogen receptors alpha and beta. iScience 2024; 27:109275. [PMID: 38469564 PMCID: PMC10926205 DOI: 10.1016/j.isci.2024.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/05/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
The initial step in estrogen-regulated transcription is the binding of a ligand to its cognate receptors, named estrogen receptors (ERα and ERβ). Phytochemicals present in foods and environment can compete with endogenous hormones to alter physiological responses. We screened 224 flavonoids in our engineered biosensor ERα and ERβ PRL-array cell lines to characterize their activity on several steps of the estrogen signaling pathway. We identified 83 and 96 flavonoids that can activate ERα or ERβ, respectively. While most act on both receptors, many appear to be subtype-selective, including potent flavonoids that activate ER at sub-micromolar concentrations. We employed an orthogonal assay using a transgenic zebrafish in vivo model that validated the estrogenic potential of these compounds. To our knowledge, this is the largest study thus far on flavonoids and the ER pathway, facilitating the identification of a new set of potential endocrine disruptors acting on both ERα and ERβ.
Collapse
Affiliation(s)
- Michael J. Bolt
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, and Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Jessica Oceguera
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, and Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Pankaj K. Singh
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, and Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Kazem Safari
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, and Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Derek H. Abbott
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaley A. Neugebauer
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center For Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel A. Gorelick
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center For Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, and Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A. Mancini
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, and Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Shao Y, Yu Y, Pang S, Ge L, Shi H. Soybean Isoflavones Ameliorates Lactation Performance in Postpartum Mice by Alleviating Oxidative Stress and Regulating Gut Microflora. Mol Nutr Food Res 2024; 68:e2300184. [PMID: 38175853 DOI: 10.1002/mnfr.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Indexed: 01/06/2024]
Abstract
Postpartum dysgalactiae syndrome (PPDS) is one of the key issues affecting breastfeeding, usually occurring as breast swelling, a low milk yield, and at length a stop of breast milk secretion. Therefore, there is a need to investigate the effectiveness of Traditional Chinese Medicine (TCM) diet therapy in treating or preventing PPDS. This study aims to analyze the effect of soybean isoflavone (SIF), a natural estrogen found in plants, on postpartum lactation performance in mice and to evaluate its potential as a treatment for PPDS. Adult female BALB/c mice at 8 weeks of age (25 ± 3 g) are randomly divided into four groups fed with different levels of SIF and a normal diet for 14 days. SIF (0, 50, 100, 200 mg kg-1 BW) is provided via intra-gastric route to the experimental mice. Using a high-throughput sequencing of microbial diversity and mammary gland metabolites, it is found that SIF-treated mice potentially show an improved milk performance via enhanced antioxidant capacity and altered gut microbiota. SIF from plant sources at a high dosage promotes the lactation in normal postpartum mice.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shilong Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Liyan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
7
|
Kobayashi K. Culture Models to Investigate Mechanisms of Milk Production and Blood-Milk Barrier in Mammary Epithelial Cells: a Review and a Protocol. J Mammary Gland Biol Neoplasia 2023; 28:8. [PMID: 37126158 PMCID: PMC10151314 DOI: 10.1007/s10911-023-09536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
Mammary epithelial cells (MECs) are the only cell type that produces milk during lactation. MECs also form less-permeable tight junctions (TJs) to prevent the leakage of milk and blood components through the paracellular pathway (blood-milk barrier). Multiple factors that include hormones, cytokines, nutrition, and temperature regulate milk production and TJ formation in MECs. Multiple intracellular signaling pathways that positively and negatively regulate milk production and TJ formation have been reported. However, their regulatory mechanisms have not been fully elucidated. In addition, unidentified components that regulate milk production in MECs likely exist in foods, for example plants. Culture models of functional MECs that recapitulate milk production and TJs are useful tools for their study. Such models enable the elimination of indirect effects via cells other than MECs and allows for more detailed experimental conditions. However, culture models of MECs with inappropriate functionality may result in unphysiological reactions that never occur in lactating mammary glands in vivo. Here, I briefly review the physiological functions of alveolar MECs during lactation in vivo and culture models of MECs that feature milk production and less-permeable TJs, together with a protocol for establishment of MEC culture with functional TJ barrier and milk production capability using cell culture inserts.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
8
|
Pan F, Li P, Hao G, Liu Y, Wang T, Liu B. Enhancing Milk Production by Nutrient Supplements: Strategies and Regulatory Pathways. Animals (Basel) 2023; 13:ani13030419. [PMID: 36766308 PMCID: PMC9913681 DOI: 10.3390/ani13030419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The enhancement of milk production is essential for dairy animals, and nutrient supplements can enhance milk production. This work summarizes the influence of nutrient supplements-including amino acids, peptides, lipids, carbohydrates, and other chemicals (such as phenolic compounds, prolactin, estrogen and growth factors)-on milk production. We also attempt to provide possible illuminating insights into the subsequent effects of nutrient supplements on milk synthesis. This work may help understand the strategy and the regulatory pathway of milk production promotion. Specifically, we summarize the roles and related pathways of nutrients in promoting milk protein and fat synthesis. We hope this review will help people understand the relationship between nutritional supplementation and milk production.
Collapse
Affiliation(s)
- Fengguang Pan
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Peizhi Li
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou 313001, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yinuo Liu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (B.L.)
| | - Boqun Liu
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (B.L.)
| |
Collapse
|
9
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|