1
|
Zhu L, Akhmet N, Bo D, Pan C, Wu J, Lan X. Genetic variant of the sheep E2F8 gene and its associations with litter size. Anim Biotechnol 2024; 35:2337751. [PMID: 38597900 DOI: 10.1080/10495398.2024.2337751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The economic efficiency of sheep breeding, aiming to enhance productivity, is a focal point for improvement of sheep breeding. Recent studies highlight the involvement of the Early Region 2 Binding Factor transcription factor 8 (E2F8) gene in female reproduction. Our group's recent genome-wide association study (GWAS) emphasizes the potential impact of the E2F8 gene on prolificacy traits in Australian White sheep (AUW). Herein, the purpose of this study was to assess the correlation of the E2F8 gene with litter size in AUW sheep breed. This work encompassed 659 AUW sheep, subject to genotyping through PCR-based genotyping technology. Furthermore, the results of PCR-based genotyping showed significant associations between the P1-del-32bp bp InDel and the fourth and fifth parities litter size in AUW sheep; the litter size of those with genotype ID were superior compared to those with DD and II genotypes. Thus, these results indicate that the P1-del-32bp InDel within the E2F8 gene can be useful in marker-assisted selection (MAS) in sheep.
Collapse
Affiliation(s)
- Leijing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Nazar Akhmet
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Didi Bo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Jiyao Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| |
Collapse
|
2
|
Mao S, Dong S, Hou B, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Transcriptome analysis reveals pituitary lncRNA, circRNA and mRNA affecting fertility in high- and low-yielding goats. Front Genet 2023; 14:1303031. [PMID: 38152654 PMCID: PMC10751935 DOI: 10.3389/fgene.2023.1303031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
The pituitary gland serves as the central endocrine regulator of growth, reproduction, and metabolism and plays a crucial role in the reproductive process of female animals. Transcriptome analysis was conducted using pituitary gland samples from Leizhou goats with varying levels of fecundity to investigate the effects of long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA regulation on pituitary hormone secretion and its association with goat fecundity. The analysis aimed to identify lncRNAs, circRNAs, and mRNAs that influence the fertility of Leizhou goats. GO and KEGG enrichment analyses were performed on differentially expressed lncRNAs, circRNAs, and mRNAs and revealed considerable enrichment in pathways, such as regulation of hormone secretion, germ cell development, and gonadotropin-releasing hormone secretion. The pituitary lncRNAs (ENSCHIT00000010293, ENSCHIT00000010304, ENSCHIT00000010306, ENSCHIT00000010290, ENSCHIT00000010298, ENSCHIT00000006769, ENSCHIT00000006767, ENSCHIT00000006921, and ENSCHIT00000001330) and circRNAs (chicirc_029285, chicirc_026618, chicirc_129655, chicirc_018248, chicirc_122554, chicirc_087101, and chicirc_078945) identified as differentially expressed regulated hormone secretion in the pituitary through their respective host genes. Additionally, differential mRNAs (GABBR2, SYCP1, HNF4A, CBLN1, and CDKN1A) influenced goat fecundity by affecting hormone secretion in the pituitary gland. These findings contribute to the understanding of the molecular mechanisms underlying pituitary regulation of fecundity in Leizhou goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Wang Q, Song X, Bi Y, Zhu H, Wu X, Guo Z, Liu M, Pan C. Detection distribution of CNVs of SNX29 in three goat breeds and their associations with growth traits. Front Vet Sci 2023; 10:1132833. [PMID: 37706075 PMCID: PMC10495836 DOI: 10.3389/fvets.2023.1132833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/17/2023] [Indexed: 09/15/2023] Open
Abstract
As a member of the SNX family, the goat sorting nexin 29 (SNX29) is initially identified as a myogenesis gene. Therefore, this study aimed to examine the polymorphism in the SNX29 gene and its association with growth traits. In this study, we used an online platform to predict the structures of the SNX29 protein and used quantitative real-time PCR to detect potential copy number variation (CNV) in Shaanbei white cashmere (SBWC) goats (n = 541), Guizhou black (GB) goats (n = 48), and Nubian (NB) goats (n = 39). The results showed that goat SNX29 protein belonged to non-secretory protein. Then, five CNVs were detected, and their association with growth traits was analyzed. In SBWC goats, CNV1, CNV3, CNV4, and CNV5 were associated with chest width and body length (P < 0.05). Among them, the CNV1 individuals with gain and loss genotypes were superior to those individuals with a median genotype, but CNV4 and CNV5 of individuals with the median genotype were superior to those with the loss and gain genotypes. In addition, individuals with the gain genotype had superior growth traits in CNV3. In brief, this study suggests that the CNV of SNX29 can be used as a molecular marker in goat breeding.
Collapse
Affiliation(s)
- Qian Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Yi Bi
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhengang Guo
- Animal Husbandry and Veterinary Science Institute of Bijie City, Bijie, Guizhou, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Su P, Luo Y, Huang Y, Akhatayeva Z, Xin D, Guo Z, Pan C, Zhang Q, Xu H, Lan X. Short variation of the sheep PDGFD gene is correlated with litter size. Gene X 2022; 844:146797. [PMID: 35985413 DOI: 10.1016/j.gene.2022.146797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Platelet-derived growth factor (PDGF) family, exert plays a key role in embryonic development, cell proliferation, cell migration, angiogenesis and reproduction. Related studies about GWAS analyses have found that PDGFD significantly affected deposition of tail fat in sheep, but there are no studies on reproduction in animals. In this study, three breed of sheep were used to find insertion/deletion (indel) fragment polymorphism of PDGFD which including Australian white (AUW) sheep (Meat type, n = 932), Guiqian semi-fine wool (GSFW) sheep (wool type, n = 60) and East Friensian milk (EFM) sheep (dairy type, n = 60). Only a 18-bp variation was polymorphic in the study AUW sheep population and the genotypes of different sheep breed are also specific. Moreover, the association analysis indicated that this variant was associated with litter size of AUW sheep in the first parity (p < 0.05). The litter size of II genotype was significantly lower than other genotypes in the first parity (p < 0.05). We also revealed that the PDGFD gene was relatively conservative in eight species, PDGFD mRNA expression in 832 sheep samples implying this gene was related to reproduction traits. Hence, these finding demonstrated the one-cause multipotency of PDGFD gene. Collectively, these results suggest that this indel can be used as an effective marker for sheep breeding.
Collapse
Affiliation(s)
- Peng Su
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China; Tianjin Aoqun Animal Husbandry Co.Ltd., Tianjin 301607, China.
| | - Yunyun Luo
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Yangming Huang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China; Tianjin Aoqun Animal Husbandry Co.Ltd., Tianjin 301607, China.
| | - Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Dongyun Xin
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Zhengang Guo
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Chuanying Pan
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Academy Company, Tianjin 300000, China; Tianjin Aoqun Animal Husbandry Co.Ltd., Tianjin 301607, China.
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China.
| | - Xianyong Lan
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shanxi 712100, China.
| |
Collapse
|
5
|
Wang Q, Bi Y, Wang Z, Zhu H, Liu M, Wu X, Pan C. Goat SNX29: mRNA expression, InDel and CNV detection, and their associations with litter size. Front Vet Sci 2022; 9:981315. [PMID: 36032302 PMCID: PMC9399746 DOI: 10.3389/fvets.2022.981315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
The sorting nexin 29 (SNX29) gene, a member of the SNX family, is associated with material transport and lipid metabolism. Previous studies have shown that lipid metabolism affects reproductive function in animals. Thus, we hypothesized there is a correlation between the SNX29 gene and reproductive trait. To date, studies on the relationship between the SNX29 gene and reproductive traits are limited. Therefore, the purpose of this study was to examine the polymorphism in the SNX29 gene and its correlation with litter size. Herein, the mRNA expression levels of SNX29 were assayed in various goat tissue. Surprisingly, we found that SNX29 was highly expressed in the corpus luteum, large and small follicles. This result led us to suggest that the SNX29 gene has a critical role in reproduction. We further detected potential polymorphisms in Shaanbei white cashmere (SBWC) goats, including insertion/deletion (InDel, n = 2,057) and copy number variation (CNV, n = 1,402), which were related to fertility. The 17 bp deletion (n = 1004) and the 20 bp deletion (n = 1,053) within the SNX29 gene were discovered to be significantly associated with litter size (P < 0.05), and individuals the ID genotype of P1-Del-17 bp and the DD genotype of P2-Del-20bp had larger litter size. Additionally, the four CNV loci had significant correlations with litter size (P < 0.01) in our detected population. In CNV5, individuals with the median genotype were superior compared to those with loss or gain genotype in term of litter size, and in other three CNVs showed better reproductive trait in the gain genotype. Briefly, these findings suggest that SNX29 could be used as a candidate gene for litter size in goat breeding through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Zhiying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Chuanying Pan
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
- Xianfeng Wu
| |
Collapse
|
6
|
Hu H, Yang Y, Lan X, Zhang Q, Pan C. Relationships between novel nucleotide variants within the colony-stimulating factor 1 receptor ( CSF1R) gene and mastitis indicators in sheep. Anim Biotechnol 2020; 33:731-738. [PMID: 33043858 DOI: 10.1080/10495398.2020.1830102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) plays an important role in the process of innate immunity and inflammation, thus it was hypothesized that the CSF1R gene might affect the occurrence of mammalian mastitis. The purpose of this study was to investigate the association between nucleotide variations of CSF1R gene and mastitis in Australian white sheep (AUWs). Two indel variants (Intron5-27 bp and Intron5-22 bp) within the CSF1R gene have been found in AUWs. The Chi-square test for different mastitis symptoms demonstrated that individuals without symptoms of mastitis had higher 'I' allele frequencies and 'II' genotype frequencies (p < 0.01). We found strong correlation between mastitis and lactation score through Pearson correlation analysis. Therefore, we also analyzed the relationship between the two indel loci and lactation, we found that the lactation ability of individuals with type II was stronger than that of DD genotype at the Intron5-22 bp (p < 0.05). Additionally, we found that the combined genotype of the two loci was significantly associated with mastitis (p < 0.01). These findings indicated that CSF1R mutations were significantly associated with mastitis, and could affect lactation performance, suggesting that two deletion sites could be used as the effective molecular markers against mastitis in sheep breeding.
Collapse
Affiliation(s)
- Huina Hu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuta Yang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company, Tianjin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|