1
|
Han M, Wang X, Du H, Cao Y, Zhao Z, Niu S, Bao X, Rong Y, Ao X, Guo F, Xia Q, Shang F, Wang R, Zhang Y. Genome-wide association study identifies candidate genes affecting body conformation traits of Zhongwei goat. BMC Genomics 2025; 26:37. [PMID: 39810085 PMCID: PMC11730152 DOI: 10.1186/s12864-024-11097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Identifying markers or genes crucial for growth traits in Zhongwei goats is pivotal for breeding. Pinpointing genetic factors linked to body size gain enhances breeding efficiency and economic value. In this study, we used the MGISEQ-T7 platform to re-sequence 240 Zhongwei goats (133 male; 107 female) belonging to 5 metrics of growth traits at different growth stages (40 days and 6 months, here in after referred to as 40d and 6 m), namely, Body Weight (BW), Body Height (BH), Body Length (BL), Chest Circumference (CC), Tube Circumference (TC) were examined. A Genome-wide association study (GWAS) was conducted to identify candidate genes associated with the five indicators of body conformation traits, thereby establishing a foundation for subsequent investigations into the biological functions of these genes. RESULTS A total of 19.89 Tb of raw data was generated with an average sequencing depth of about 20×. After quality control, 15,958,716 SNPs were available for the analysis. A total of 342 genome-wide significant SNPs were obtained. Among them, in the two physiological stages of 40d and 6 m, 147 and 32 SNPs were significantly associated with BW; 1 and 4 SNPs were significantly associated with BH; 19 and 6 SNPs were significantly associated with BL; 33 and 64 SNPs were significantly associated with CC, 34 and 2 SNPs were significantly associated with TC. These SNPs were annotated to 425 candidate genes. Finally, A total of 39 candidate genes are closely related to biological processes such as skeletal muscle development, skeletal formation, carcass quality, and embryonic development, where ADIPOQ, CCDD39, PTPRT, ZNF215, VRTN, ABCD4, DLST, ADAMTS2, ROBO1, AKAP13, AQPI, SOX2, and AHSG were identified as an important component of the genetic framework that may control somatic conformational traits in Zhongwei goats. which warrants further investigation and review. We verified the polymorphism of 11 SNPs by KASP, and found that Chr13_g.11,700,438 A > G, Chr15_g.37,120,328 A > G, Chr6_g.7,209,383 C > T, Chr20_g.51277932T > A, Chr19_g.17,078,199 A > G, and Chr1_g.79,943,276 C > T were significantly genotyped in verified populations (P < 0.001). CONCLUTION It is the first GWAS study to analyze genomic data from 40d and 6 m of Zhongwei goats to understand the molecular genetic mechanisms of growth. Our research identified a series of SNPs and candidate genes associated with growth traits, which could assist us in developing the meat production trait in Zhongwei goats.
Collapse
Affiliation(s)
- Mingxuan Han
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xinbo Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haidong Du
- Zhongwei Goat Breeding Farm, Zhongwei, 755006, China
| | - Yanlong Cao
- Zhongwei Goat Breeding Farm, Zhongwei, 755006, China
| | | | - Shuran Niu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xuxu Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiaofang Ao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Furong Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qincheng Xia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, 010018, China.
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot, 010018, China.
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, 010018, China.
- Key Laboratory of Goat and Sheep Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, Hohhot, 010018, China.
| |
Collapse
|
2
|
Wang L, Valencak TG, Shan T. Fat infiltration in skeletal muscle: Influential triggers and regulatory mechanism. iScience 2024; 27:109221. [PMID: 38433917 PMCID: PMC10907799 DOI: 10.1016/j.isci.2024.109221] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Fat infiltration in skeletal muscle (also known as myosteatosis) is now recognized as a distinct disease from sarcopenia and is directly related to declining muscle capacity. Hence, understanding the origins and regulatory mechanisms of fat infiltration is vital for maintaining skeletal muscle development and improving human health. In this article, we summarized the triggering factors such as aging, metabolic diseases and metabolic syndromes, nonmetabolic diseases, and muscle injury that all induce fat infiltration in skeletal muscle. We discussed recent advances on the cellular origins of fat infiltration and found several cell types including myogenic cells and non-myogenic cells that contribute to myosteatosis. Furthermore, we reviewed the molecular regulatory mechanism, detection methods, and intervention strategies of fat infiltration in skeletal muscle. Based on the current findings, our review will provide new insight into regulating function and lipid metabolism of skeletal muscle and treating muscle-related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | | | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Ma X, Wang Y, Li X, Wang J, Wang B, Lin Y, Xiong Y. Cloning of goat PGAM2 gene and its overexpression promotes the differentiation of intramuscular preadipocytes. Anim Biotechnol 2023; 34:4210-4218. [PMID: 36315243 DOI: 10.1080/10495398.2022.2138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
As a member of the PGAMs family, PGAM2 has been proved to catalyze the reversible reaction of 3-phosphoglycerate (3-PGA) to 2-phosphoglycerate (2-PGA) in the glycolytic pathway. However, it is unclear whether PGAM2 has a role in regulating differentiation in goat intramuscular preadipocytes. Here, this study was carried to clone the open reading frame (ORF) of goat PGAM2, elucidate its molecular and expressional characteristics, and evaluate the involvement in adipogenesis of intramuscular preadipocytes. According to our findings, the cloned goat PGAM2 gene was 784 bp in full length, including 762 bp of ORF and encoding a protein of 253 amino acids. The expressional level of PGAM2 peaked at 48 hours after induced adipogenic differentiation and was highest in the skeletal muscle of triceps. Moreover, overexpression of PGAM2 transfected by its overexpression plasmid promotes lipid accumulation of goat intramuscular adipocyte as shown by Oil Red O and bodipy staining, accompanied by up-regulating the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) (p < 0.001), sterol regulatory element-binding protein 1 (SREBP1) (p < 0.001), CCAAT/Enhancer-binding protein α (C/EBPα) (p < 0.01) and lipoprotein lipase (LPL) (p < 0.01). Taken together, these findings indicate that PGAM2 is a positive regulator for goat intramuscular adipocytes and provide new insights into improvement intramuscular fat deposition in goat meat.
Collapse
Affiliation(s)
- Xiao Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
| | - Yuxue Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, P.R. China
| | - Xinyi Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
| | - Jian Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
| | - Botao Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
| | - Yaqiu Lin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, P.R. China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, P.R. China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Chengdu, Sichuan, P.R. China
| |
Collapse
|
4
|
Zhang S, Cui Y, Gao X, Wei C, Wang Q, Yang B, Sun W, Luo Y, Jiang Q, Huang Y. Resveratrol inhibits the formation and accumulation of lipid droplets through AdipoQ signal pathway and lipid metabolism lncRNAs. J Nutr Biochem 2023; 117:109351. [PMID: 37087074 DOI: 10.1016/j.jnutbio.2023.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
Resveratrol (RES) is one of the best-known bioactive polyphenols that has received much attention in recent years because of its importance to anti-obesity. However, the exact mechanism underlying this effect and whether it can improve lipid metabolism by regulating the long-chain non-coding RNA (lncRNA) remains unclear. In this study, twenty-four healthy crossbred castrated boars were fed a basal diet (control) and a basal diet supplemented with 200 mg, 400 mg or 600 mg RES per Kilogram (kg) of feed for 41 days, respectively. We founded that 400mg/kg and 600mg/kg RES-supplemented diet did not affect growth rate, but reduced significantly subcutaneous adipose thickness, carcass fat rate, greater dramatically the serum concentration of adiponectin and high-density lipoprotein in pigs. Further, we verified that RES could inhibit the formation and accumulation of lipid droplets by AdipoQ-AdipoR1-AMPKα and AdipoQ-AdipoR2-PPARα signal pathway in vivo and vitro (3T3-L1 preadipocytes). Transcriptome analyses founded that 5 differently expressed (DE) lncRNAs and 77 mRNAs in subcutaneous adipose between control group and 400 mg/kg RES group, which mainly involved in "adipocytokine signaling pathway", "Wnt signaling pathway", "PI3K-Akt signaling pathway" and "MAPK signaling pathway". In conclusion, RES can inhibit the formation and accumulation of lipid droplets through AdipoQ signal pathway and lipid metabolism-related lncRNAs. Our results provide a new insight on the molecular mechanism of RES as a nutritional agents to the prevention and treatment for obesity.
Collapse
Affiliation(s)
- Sanbao Zhang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Yueyue Cui
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Xiaotong Gao
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Chongwan Wei
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Qian Wang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Bao Yang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Wenyue Sun
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Yunyan Luo
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi 530004, China.
| |
Collapse
|
5
|
Easa AA, Selionova M, Aibazov M, Mamontova T, Sermyagin A, Belous A, Abdelmanova A, Deniskova T, Zinovieva N. Identification of Genomic Regions and Candidate Genes Associated with Body Weight and Body Conformation Traits in Karachai Goats. Genes (Basel) 2022; 13:genes13101773. [PMID: 36292658 PMCID: PMC9601913 DOI: 10.3390/genes13101773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
The objective of this study was to identify the SNPs and candidate genes related to body weight and seven body conformation traits at the age of 8 months in the Russian aboriginal Karachai goats (n = 269) by conducting genome-wide association studies (GWAS), using genotypes generated by Goat SNP BeadChip (Illumina Inc., USA). We identified 241 SNPs, which were significantly associated with the studied traits, including 47 genome-wide SNPs (p < 10−5) and 194 suggestive SNPs (p < 10−4), distributed among all goat autosomes except for autosome 23. Fifty-six SNPs were common for two and more traits (1 SNP for six traits, 2 SNPs for five traits, 12 SNPs for four traits, 20 SNPs for three traits, and 21 SNPs for two traits), while 185 SNPs were associated with single traits. Structural annotation within a window of 0.4 Mb (±0.2 Mb from causal SNPs) revealed 238 candidate genes. The largest number of candidate genes was identified at Chr13 (33 candidate genes for the five traits). The genes identified in our study were previously reported to be associated with growth-related traits in different livestock species. The most significant genes for body weight were CRADD, HMGA2, MSRB3, MAX, HACL1 and RAB15, which regulate growth processes, body sizes, fat deposition, and average daily gains. Among them, the HMGA2 gene is a well-known candidate for prenatal and early postnatal development, and the MSRB3 gene is proposed as a candidate gene affecting the growth performance. APOB, PTPRK, BCAR1, AOAH and ASAH1 genes associated with withers height, rump height and body length, are involved in various metabolic processes, including fatty acid metabolism and lipopolysaccharide catabolism. In addition, WDR70, ZBTB24, ADIPOQ, and SORCS3 genes were linked to chest width. KCNG4 was associated with rump height, body length and chest perimeter. The identified candidate genes can be proposed as molecular markers for growth trait selection for genetic improvement in Karachai goats.
Collapse
Affiliation(s)
- Ahmed A. Easa
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22511, Egypt
- Correspondence: (A.A.E.); (N.Z.)
| | - Marina Selionova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Magomet Aibazov
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Tatiana Mamontova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Alexander Sermyagin
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Anna Belous
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Alexandra Abdelmanova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Tatiana Deniskova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Natalia Zinovieva
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
- Correspondence: (A.A.E.); (N.Z.)
| |
Collapse
|
6
|
Resveratrol Inhibits Proliferation and Differentiation of Porcine Preadipocytes by a Novel LincRNA-ROFM/miR-133b/AdipoQ Pathway. Foods 2022; 11:foods11172690. [PMID: 36076875 PMCID: PMC9455634 DOI: 10.3390/foods11172690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Resveratrol (RES) has a wide range of biological and pharmacological activities with various health benefits for humans as a food additive. In animal production, RES has been considered a potential functional feed additive for producing high-quality pork. Long noncoding RNAs (lncRNAs) have emerged as essential regulators of fat metabolism, and phytochemicals can regulate fat metabolism through lncRNA. However, it is unclear whether RES can improve back-fat thickness by regulating lncRNA. In this study, we identified a novel lncRNA, which was named a long intergenic non-protein coding RNA, a regulator of fat metabolism (LincRNA-ROFM), from our previous lncRNA sequencing data. LincRNA-ROFM can inhibit adipocyte proliferation and differentiation. In-depth analyses showed that LincRNA-ROFM acts as a molecular sponge for miR-133b, and adiponectin (AdipoQ) is a direct target of miR-133b in porcine preadipocytes. In addition, the expression of LincRNA-ROFM was positively correlated with AdipoQ. RES can promote the expression of LincRNA-ROFM by PPARα and C/EBPα. Altogether, our research showed that LincRNA-ROFM acts as a ceRNA to sequester miR-133b and is upregulated by RES, leading to heightened AdipoQ expression, and thus decreased adipocyte proliferation and differentiation, which reduces back-fat thickness of pigs. Taken together, the RES/LincRNA-ROFM/miR-133b/AdipoQ regulatory network preliminarily explains the mechanism of action of RES in inhibiting fat deposition, which provides new insight into the downstream mechanism of RES inhibition of fat deposits by regulating the lncRNA.
Collapse
|
7
|
Ren Q, Li H, Xu F, Zhu Y, Zhang X, Fan T, Wei Z, Yuan F, Han F, Cong R. Effect of high-concentrate diets on mRNA expression of genes related to muscle fiber type and metabolism of psoas major muscle in goats. Anim Sci J 2022; 93:e13725. [PMID: 35508764 DOI: 10.1111/asj.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
In the process of modern breeding, high-concentrate diets are widely used to meet the high energy nutritional requirements of animals but change the form of access to energy and nutrients and the way the organism metabolizes them. Goat psoas major (PM) muscle is a hybrid skeletal muscle whose characteristics are important for the motility and meat quality of goats. However, there are few studies on the effects of high-concentrate diets on the muscle type and metabolic characteristics of PM in goats. In this study, two treatment groups were set up: high concentrate group (HC) and control group (C). The expression of genes related to muscle type and metabolism of the PM was examined by quantitative PCR. The results showed that high concentrate promoted the conversion of PM fibers from intermediate to slow type at the mRNA level, improved the absorption, transport, and oxidation of fat by PM, and upregulated the expression of calpain system. These changes may be regulated by the involvement of differential expression of MSTN, Myf-5, and IGF-2. These results suggest that high concentrate may exert a positive effect on skeletal muscle function, metabolism, and meat quality in goats by affecting the expression of muscle type and metabolism-related genes.
Collapse
Affiliation(s)
- Qijun Ren
- Northwest A&F University, Xianyang, China
| | - Hanmei Li
- Northwest A&F University, Xianyang, China
| | | | - Yihan Zhu
- Northwest A&F University, Xianyang, China
| | | | | | | | | | - Fei Han
- Yangling Vocational & Technical College, Xianyang, China
| | - Rihua Cong
- Northwest A&F University, Xianyang, China
| |
Collapse
|
8
|
Xu Q, Li Y, Lin S, Wang Y, Zhu J, Lin Y. KLF4 Inhibits the Differentiation of Goat Intramuscular Preadipocytes Through Targeting C/EBPβ Directly. Front Genet 2021; 12:663759. [PMID: 34421986 PMCID: PMC8373462 DOI: 10.3389/fgene.2021.663759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Intramuscular fat (IMF) deposition is a complicated process, and most of the underlying regulators of this biological process are unknown. Here, we cloned the intact CDS of KLF4 gene, investigated the role of KLF4 by gaining or losing function in vitro and further explored the pathways of KLF4 regulating differentiation of intramuscular preadipocytes in goat. Our results show that goat KLF4 gene consists of 1,536 bp encoding a protein of 486 amino acids. The expression of KLF4 is higher in the lung while lower in the heart and muscle in goat. Knockdown of KLF4 mediated by siRNA technique significantly promotes intramuscular preadipocyte lipid accumulation and upregulates mRNA expression of adipogenic related genes including C/EBPα, C/EBPβ, and PPARγ in vivo cultured cells. Consistently, overexpression of KLF4 inhibits intramuscular adipocyte lipid accumulation and significantly downregulation gene expression of C/EBPβ, PPARγ, aP2, and Pref-1. Further, we found that other members of KLFs were upregulated or downregulated after interference or overexpression of KLF4, including KLF2 and KLF5-7. We also found that C/EBPβ was a potential target of KLF4, because it had an opposite expression pattern with KLF4 during the differentiation of intramuscular preadipocytes and had putative binding sites of KLF4. The dual-luciferase reporter assay indicated that overexpression of KLF4 inhibited the transcriptional activity of C/EBPβ. These results demonstrate that KLF4 inhibits the differentiation of intramuscular preadipocytes in goat by targeting C/EBPβ.
Collapse
Affiliation(s)
- Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Sen Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|