1
|
Huang CJ, Choo KB. Circular RNAs and host genes act synergistically in regulating cellular processes and functions in skeletal myogenesis. Gene 2025; 940:149189. [PMID: 39724991 DOI: 10.1016/j.gene.2024.149189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages. This review aims to provide an integrated interpretations on methodologies, regulatory mechanisms and possible host gene-circRNA synergistic functional relationships in skeletal myogenesis, focusing on myoblast differentiation and proliferation, core drivers of muscle formation in myogenesis, while other myogenic processes that play supportive roles in the structure, maintenance and function of muscle tissues are also briefly discussed. On literature review,thirty-two circRNAs derived from thirty-one host genes involved in various myogenic stages are identified; twenty-two (68.6 %) of these circRNAs regulate myogenesis by sequestering miRNAs to engage PI3K/AKT and other signaling pathways while four (12.5 %) are translated into proteins for functions. In circRNA-host gene relationship,ten (32.3 %) host genes are shown to regulate myogenesis,nine (29.0 %) are specific to skeletal muscle functions,and twelve (38.8 %) are linked to skeletal muscle disorders.Our analysis of skeletal myogenesis suggests that circRNAs and host genes act synergistically to regulate cellular functions. Such circRNA-host gene functional synergism may also be found in other major cellular processes. CircRNAs may have evolved later than miRNAs to counteract the suppressive effects of miRNAs and to augment host gene functions to further fine-tune gene regulation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Liu CL, Ren T, Ruan PC, Huang YF, Ceccobelli S, Huang DJ, Zhang LP, E GX. Genome-Wide Association Integrating a Transcriptomic Meta-Analysis Suggests That Genes Related to Fat Deposition and Muscle Development Are Closely Associated with Growth in Huaxi Cattle. Vet Sci 2025; 12:109. [PMID: 40005876 PMCID: PMC11860805 DOI: 10.3390/vetsci12020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Growth traits are among the most important economic phenotypes targeted in the genetic improvement of beef cattle. To understand the genetic basis of growth traits in Huaxi cattle, we performed a genome-wide association study (GWAS) on body weight, eye muscle area, and back fat thickness across five developmental stages in a population of 202 Huaxi cattle. Additionally, publicly available RNA-seq data from the longissimus dorsi muscle of both young and adult cattle were analyzed to identify key genes and genetic markers associated with growth in Huaxi cattle. In total, 7.19 million high-quality variant loci (SNPs and INDELs) were identified across all samples. In the GWAS, the three multilocus models (FarmCPU, MLMM, and BLINK) outperformed the conventional single-locus models (CMLM, GLM, and MLM). Consequently, GWAS analysis was conducted using multilocus models, which identified 99 variant loci significantly associated with growth traits and annotated a total of 83 candidate genes (CDGs). Additionally, 23 of the 83 CDGs overlapped with significantly differentially expressed genes identified from public RNA-seq datasets of longissimus dorsi muscle between young and adult cattle. Furthermore, gene functional enrichment (KEGG and GO) analyses revealed that over 30% of the pathways and GO terms were associated with muscle development and fat deposition, crucial factors for beef production. Specifically, key genes identified included MGLL, SGMS1, SNX29 and AKAP6, which are implicated in lipid metabolism, adipogenesis, and muscle growth. In summary, this study provides new insights into the genetic mechanisms underlying growth traits in Huaxi cattle and presents promising markers for future breeding improvements.
Collapse
Affiliation(s)
- Cheng-Li Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Ren
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Peng-Cheng Ruan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Yong-Fu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - De-Jun Huang
- Chongqing Academy of Animal Science, Chongqing 402460, China;
| | - Lu-Pei Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100006, China
| | - Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (C.-L.L.); (T.R.); (P.-C.R.); (Y.-F.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Li X, Wang Z, Wang Q, Akhmet N, Zhu H, Guo Z, Pan C, Lan X, Zhang S. Relationships between the mutations of the goat GATA binding protein 4 gene and growth traits. Gene 2024; 898:148095. [PMID: 38128793 DOI: 10.1016/j.gene.2023.148095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Osteogenesis is a complex multilevel process regulated by multiple genes. The GATA binding protein 4 (GATA4) gene has been extensively studied for its pivotal role in bone genesis and bone differentiation. However, its relationship with the growth traits of Shaanbei white cashmere (SBWC) and Guizhou black (GB) goats remains unclear. This work aims to investigate the potential influence of genetic mutations in the GATA4 gene on the growth traits goats. Thus, two Insertion/deletion (InDel) polymorphisms (8-bp-InDel and 9-bp-InDel) were screened and detected in a total of 1161 goats (including 980 SBWC goats and 181 GB goats) using PCR and agarose gel electrophoresis. The analyses revealed that there were two genotypes (ID and DD) for these two loci. In SBWC goats, 8-bp-InDel and 9-bp-InDel loci were significantly associated with heart girth (HG) and hip width (HW). Notably, individuals with DD genotype of 8-bp-InDel locus were superior while those with DD genotype of 9-bp-InDel locus were inferior. Correlation analyses of the four combined genotypes revealed significant associations with cannon circumference (CC), body height (BH), HG and HW. This work provides a foundation for the application of molecular marker-assisted selection (MAS) in goat breeding programs. Furthermore, the findings highlight the potential of the GATA4 gene and its genetic variations as valuable indicators for selecting goats with desirable growth traits.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Nazar Akhmet
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haijing Zhu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Zhengang Guo
- Bijie Institute of Animal Husbandry and Veterinary Science, Guizhou Province,Bijie 551700, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Zhou Q, Hu H, Yang Y, Kang Y, Lan X, Wu X, Guo Z, Pan C. Insertion/deletion (Indel) variant of the goat RORA gene is associated with growth traits. Anim Biotechnol 2023; 34:2175-2182. [PMID: 35622416 DOI: 10.1080/10495398.2022.2078980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
RAR related orphan receptor A (RORA), which encodes the retinoid-acid-related orphan receptor alpha (RORα), is a clock gene found in skeletal muscle. Several studies have shown that RORα plays an important role in bone formation, suggesting that RORA gene may take part in the regulation of growth and development. The purpose of this research is to study the insertion/deletion (indel) variations of the RORA gene and investigate the relationship with the growth traits of Shaanbei white cashmere (SBWC) goats. Herein, the current study identified that the P4-11-bp and P11-28-bp deletion sites are polymorphic among 12 pairs of primers within the RORA gene in the SBWC goats (n = 641). Moreover, the P11-28-bp deletion locus was significantly related to the body height (p = 0.046), height at hip cross (p = 0.012), and body length (p = 0.003). Both of P4-11-bp and P11-28-bp indels showed the moderate genetic diversity (0.25
Collapse
Affiliation(s)
- Qian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huina Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhengang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Animal Husbandry and Veterinary Science Institute of Bijie city, Bijie, Guizhou, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Saravanan KA, Rajawat D, Kumar H, Nayak SS, Bhushan B, Dutt T, Panigrahi M. Signatures of selection in riverine buffalo populations revealed by genome-wide SNP data. Anim Biotechnol 2023; 34:3343-3354. [PMID: 36384399 DOI: 10.1080/10495398.2022.2145292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The detection of selection signatures assists in understanding domestication, evolution, and the identification of genomic regions related to adaptation and production traits in buffaloes. The emergence of high-throughput technologies like Next Generation Sequencing and SNP genotyping had expanded our ability to detect these signatures of selection. In this study, we sought to identify signatures of selection in five buffalo populations (Brazilian Murrah, Bulgarian Murrah, Indian Murrah, Nili-Ravi, and Kundi) using Axiom Buffalo 90 K Genotyping Array data. Using seven different methodologies (Tajima's D, CLR, ROH, iHS, FST, FLK and hapFLK), we identified selection signatures in 374 genomic regions, spanning a total of 381 genes and 350 quantitative trait loci (QTLs). Among these, several candidate genes were associated with QTLs for milk production, reproduction, growth and carcass traits. The genes and QTLs reported in this study provide insight into selection signals shaping the genome of buffalo breeds. Our findings can aid in further genomic association studies, genomic prediction, and the implementation of breeding programmes in Indian buffaloes.
Collapse
Affiliation(s)
- K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
6
|
Selionova M, Aibazov M, Sermyagin A, Belous A, Deniskova T, Mamontova T, Zharkova E, Zinovieva N. Genome-Wide Association and Pathway Analysis of Carcass and Meat Quality Traits in Karachai Young Goats. Animals (Basel) 2023; 13:3237. [PMID: 37893961 PMCID: PMC10603756 DOI: 10.3390/ani13203237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Goats with diverse economic phenotypic traits play an important role in animal husbandry. However, the genetic mechanisms underlying complex phenotypic traits are unclear in goats. Genomic studies of variations provided a lens to identify functional genes. The work aimed to search for candidate genes related to body measurements and body weight of Karachai goats and develop an experimental PCR-RV test system for genotyping significant SNPs. Comparison of GWAS results for ages 4 and 8 months revealed 58 common SNPs for significant genotypes. 11 common SNPs were identified for body weight, 4 SNPs-for group of traits withers height, rump height, body length, 2 SNPs-for withers height and rump height, 1 SNP-for body length and chest depth. Structural annotation of genomic regions covering a window of ±0.20 Mb showed the presence of 288 genes; 52 of them had the described functions in accordance with gene ontology. The main molecular functions of proteins encoded by these genes are the regulation of transcription, cell proliferation, angiogenesis, body growth, fatty acid and lipid metabolism, nervous system development, and spermatogenesis. SNPs common to body weight and localized within a window of ±200 kb from the structural genes CRADD, HMGA2, MSRB3, FUT8, MAX, and RAB15 were selected to create a test system. The study of meat productivity after slaughter and chemical analysis of muscle tissue in Karachai goats at the age of 8 months of different genotypes according to the identified SNPs revealed that rs268269710 is the most promising for further research and use in breeding. The GG genotype is associated with a larger live weight of animals, a larger carcass yield, the content of the boneless part in it, and the ratio of protein and adipose tissue in meat preferred for dietary nutrition. These results will contribute to the genetic improvement of Karachai goats.
Collapse
Affiliation(s)
- Marina Selionova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Magomet Aibazov
- North Caucasian Agrarian Center, Zootechnicheski 15, 355017 Stavropol, Russia;
| | - Alexander Sermyagin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Anna Belous
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Tatiana Deniskova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Tatiana Mamontova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Ekaterina Zharkova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Natalia Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| |
Collapse
|
7
|
Wang Q, Song X, Bi Y, Zhu H, Wu X, Guo Z, Liu M, Pan C. Detection distribution of CNVs of SNX29 in three goat breeds and their associations with growth traits. Front Vet Sci 2023; 10:1132833. [PMID: 37706075 PMCID: PMC10495836 DOI: 10.3389/fvets.2023.1132833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/17/2023] [Indexed: 09/15/2023] Open
Abstract
As a member of the SNX family, the goat sorting nexin 29 (SNX29) is initially identified as a myogenesis gene. Therefore, this study aimed to examine the polymorphism in the SNX29 gene and its association with growth traits. In this study, we used an online platform to predict the structures of the SNX29 protein and used quantitative real-time PCR to detect potential copy number variation (CNV) in Shaanbei white cashmere (SBWC) goats (n = 541), Guizhou black (GB) goats (n = 48), and Nubian (NB) goats (n = 39). The results showed that goat SNX29 protein belonged to non-secretory protein. Then, five CNVs were detected, and their association with growth traits was analyzed. In SBWC goats, CNV1, CNV3, CNV4, and CNV5 were associated with chest width and body length (P < 0.05). Among them, the CNV1 individuals with gain and loss genotypes were superior to those individuals with a median genotype, but CNV4 and CNV5 of individuals with the median genotype were superior to those with the loss and gain genotypes. In addition, individuals with the gain genotype had superior growth traits in CNV3. In brief, this study suggests that the CNV of SNX29 can be used as a molecular marker in goat breeding.
Collapse
Affiliation(s)
- Qian Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Yi Bi
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, China
- Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhengang Guo
- Animal Husbandry and Veterinary Science Institute of Bijie City, Bijie, Guizhou, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Bionda A, Cortellari M, Liotta L, Crepaldi P. The Shepherd and the Hunter: A Genomic Comparison of Italian Dog Breeds. Animals (Basel) 2023; 13:2438. [PMID: 37570247 PMCID: PMC10417656 DOI: 10.3390/ani13152438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Shepherd and hunting dogs have undergone divergent selection for specific tasks, resulting in distinct phenotypic and behavioural differences. Italy is home to numerous recognized and unrecognized breeds of both types, providing an opportunity to compare them genomically. In this study, we analysed SNP data obtained from the CanineHD BeadChip, encompassing 116 hunting dogs (representing 6 breeds) and 158 shepherd dogs (representing 9 breeds). We explored the population structure, genomic background, and phylogenetic relationships among the breeds. To compare the two groups, we employed three complementary methods for selection signature detection: FST, XP-EHH, and ROH. Our results reveal a clear differentiation between shepherd and hunting dogs as well as between gun dogs vs. hounds and guardian vs. herding shepherd dogs. The genomic regions distinguishing these groups harbour several genes associated with domestication and behavioural traits, including gregariousness (WBSRC17) and aggressiveness (CDH12 and HTT). Additionally, genes related to morphology, such as size and coat colour (ASIP and TYRP1) and texture (RSPO2), were identified. This comparative genomic analysis sheds light on the genetic underpinnings of the phenotypic and behavioural variations observed in Italian hunting and shepherd dogs.
Collapse
Affiliation(s)
- Arianna Bionda
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, University of Milano, Via Celoria 2, 20133 Milano, Italy; (A.B.); (P.C.)
| | - Matteo Cortellari
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, University of Milano, Via Celoria 2, 20133 Milano, Italy; (A.B.); (P.C.)
| | - Luigi Liotta
- Dipartimento di Scienze Veterinarie, University of Messina, Viale Palatucci 13, 98168 Messina, Italy;
| | - Paola Crepaldi
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, University of Milano, Via Celoria 2, 20133 Milano, Italy; (A.B.); (P.C.)
| |
Collapse
|
9
|
Saleh AA, Xue L, Zhao Y. Screening Indels from the whole genome to identify the candidates and their association with economic traits in several goat breeds. Funct Integr Genomics 2023; 23:58. [PMID: 36757519 DOI: 10.1007/s10142-023-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
In the present study, the re-sequencing of our previous whole-genome sequencing (WGS) for selected individuals of Dazu-black goat (DBG) and Inner-Mongolia Cashmere goat (IMCG) breeds was used to detect and compare the differentiation in Indels depending on the reference genome of goat. Then, three selected candidate Indels rs668795676, rs657996810, and rs669452874 of the three genes SUFU, SYCP2L and GLIPR1L1, respectively, have been chosen, based on the results of prior GWAS across the genome, and examined for their association with body weight and dimensions (body height, body length, heart girth, chest width, cannon circumference, and chest depth) by kompetitive allele specific PCR assay for 342 goats from the three studied goat breeds (DBG, n = 203; ♂99, ♀104), IMCG (n = 65; 15♂, 50♀), and Hechuan white goat (HWG, n = 74; 34♂, 40♀) breeds. The analysis of 192.747 Gb WGS revealed an average 334,151 Indels in the whole genome of DBG and IMCG breeds. Chromosome 1 had a maximum number of mutations (Indels) of 58,497 and 55,527 for IMCG and DBG, respectively, while chromosome 25 had the least number of mutations of 15,680 and 16,103 for IMCG and DBG, respectively. The majority of Indels were either Ins or Del of short fragments of 1-5 bp, which covered 79.06 and 71.78% of the total number of Indels mutations in IMCG and DBG, respectively. Comparing the differences of Indels between the studied goat breeds revealed 100 and 110 unique Indels for IMCG and DBG, respectively. The Indels loci in the intron region were unique for both studied goat breeds which were related to 30 and 38 candidate genes in IMCG and DBG, respectively, including SUFU, SYCP2L, and GLIPR1L1 genes. Concerning rs669452874 locus, body height and body length of Del/Del genotype in DBG were significantly higher (P < 0.05) than that of Ins/Del genotype, while body height and body length of Del/Del genotype in IMCG were significantly higher (P < 0.01) than those of Ins/Ins genotype, whereas body height and body length and heart girth of Del/Del genotype in HWG were significantly higher (P < 0.01) than those of the Ins/Del and Ins/Ins genotypes. Thus, Del/Del genotype of rs669452874 locus can be used as a candidate molecular marker related to the body dimensions in the studied goat breeds.
Collapse
Affiliation(s)
- Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City, 11865, Egypt.
| | - Lei Xue
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yongju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
10
|
Effects of Genetic Variation of the Sorting Nexin 29 ( SNX29) Gene on Growth Traits of Xiangdong Black Goat. Animals (Basel) 2022; 12:ani12243461. [PMID: 36552381 PMCID: PMC9774745 DOI: 10.3390/ani12243461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Previous studies have found that the copy number variation (CNV) and insertion/deletion (indels) located in the sorting nexin 29 (SNX29) gene, which is an important candidate gene related to meat production and quality, are associated with growth traits of African goats and Shaanbei white cashmere goats. However, the genetic effects of SNX29 genetic variation on growth traits of Xiangdong black (XDB) goat (a representative meat goat breed in China) are still unclear. The purpose of this study was to detect the mRNA expression level of SNX29 and to explore the genetic effects of CNV and indel within SNX29 on growth traits and gene expression in XDB goat. The SNX29 mRNA expression profile showed that the SNX29 was highly expressed in adipose tissues, indicating that the SNX29 gene could play a key role in subcutaneous adipose deposition of XDB goat. 17 bp indel (g.10559298-10559314), 21 bp indel (g.10918982-10919002) and CNV were detected in 516 individuals of XDB goat by PCR or qPCR. The association analysis of SNX29 CNV with growth traits in XDB goats showed that SNX29 CNV was significantly correlated with chest circumference and abdominal circumference (p < 0.01), and the normal type of SNX29 CNV goat individuals were more advantageous. For the mRNA expression of SNX29 gene, individuals with SNX29 copy number normal type had a higher trend than that of SNX29 gene with copy number gain type in longissimus dorsi muscle (p = 0.07), whereas individuals with SNX29 copy number gain type had a higher trend in abdominal adipose (p = 0.09). Overall, these results suggested that the SNX29 gene could play an important role in growth and development of XDB goats and could be used for marker-assisted selection (MAS) in XDB goats.
Collapse
|
11
|
Wang Q, Bi Y, Wang Z, Zhu H, Liu M, Wu X, Pan C. Goat SNX29: mRNA expression, InDel and CNV detection, and their associations with litter size. Front Vet Sci 2022; 9:981315. [PMID: 36032302 PMCID: PMC9399746 DOI: 10.3389/fvets.2022.981315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
The sorting nexin 29 (SNX29) gene, a member of the SNX family, is associated with material transport and lipid metabolism. Previous studies have shown that lipid metabolism affects reproductive function in animals. Thus, we hypothesized there is a correlation between the SNX29 gene and reproductive trait. To date, studies on the relationship between the SNX29 gene and reproductive traits are limited. Therefore, the purpose of this study was to examine the polymorphism in the SNX29 gene and its correlation with litter size. Herein, the mRNA expression levels of SNX29 were assayed in various goat tissue. Surprisingly, we found that SNX29 was highly expressed in the corpus luteum, large and small follicles. This result led us to suggest that the SNX29 gene has a critical role in reproduction. We further detected potential polymorphisms in Shaanbei white cashmere (SBWC) goats, including insertion/deletion (InDel, n = 2,057) and copy number variation (CNV, n = 1,402), which were related to fertility. The 17 bp deletion (n = 1004) and the 20 bp deletion (n = 1,053) within the SNX29 gene were discovered to be significantly associated with litter size (P < 0.05), and individuals the ID genotype of P1-Del-17 bp and the DD genotype of P2-Del-20bp had larger litter size. Additionally, the four CNV loci had significant correlations with litter size (P < 0.01) in our detected population. In CNV5, individuals with the median genotype were superior compared to those with loss or gain genotype in term of litter size, and in other three CNVs showed better reproductive trait in the gain genotype. Briefly, these findings suggest that SNX29 could be used as a candidate gene for litter size in goat breeding through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Zhiying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Chuanying Pan
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
- Xianfeng Wu
| |
Collapse
|
12
|
Salgado Pardo JI, Delgado Bermejo JV, González Ariza A, León Jurado JM, Marín Navas C, Iglesias Pastrana C, Martínez Martínez MDA, Navas González FJ. Candidate Genes and Their Expressions Involved in the Regulation of Milk and Meat Production and Quality in Goats ( Capra hircus). Animals (Basel) 2022; 12:ani12080988. [PMID: 35454235 PMCID: PMC9026325 DOI: 10.3390/ani12080988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary During the present decade, highly selected caprine farming has increased in popularity due to the hardiness and adaptability inherent to goats. Recent advances in genetics have enabled the improvement in goat selection efficiency. The present review explores how genetic technologies have been applied to the goat-farming sector in the last century. The main candidate genes related to economically relevant traits are reported. The major source of income in goat farming derives from the sale of milk and meat. Consequently, yield and quality must be specially considered. Meat-related traits were evaluated considering three functional groups (weight gain, carcass quality and fat profile). Milk traits were assessed in three additional functional groups (milk production, protein and fat content). Abstract Despite their pivotal position as relevant sources for high-quality proteins in particularly hard environmental contexts, the domestic goat has not benefited from the advances made in genomics compared to other livestock species. Genetic analysis based on the study of candidate genes is considered an appropriate approach to elucidate the physiological mechanisms involved in the regulation of the expression of functional traits. This is especially relevant when such functional traits are linked to economic interest. The knowledge of candidate genes, their location on the goat genetic map and the specific phenotypic outcomes that may arise due to the regulation of their expression act as a catalyzer for the efficiency and accuracy of goat-breeding policies, which in turn translates into a greater competitiveness and sustainable profit for goats worldwide. To this aim, this review presents a chronological comprehensive analysis of caprine genetics and genomics through the evaluation of the available literature regarding the main candidate genes involved in meat and milk production and quality in the domestic goat. Additionally, this review aims to serve as a guide for future research, given that the assessment, determination and characterization of the genes associated with desirable phenotypes may provide information that may, in turn, enhance the implementation of goat-breeding programs in future and ensure their sustainability.
Collapse
Affiliation(s)
- Jose Ignacio Salgado Pardo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - José Manuel León Jurado
- Agropecuary Provincial Center of Córdoba, Provincial Council of Córdoba, 14014 Córdoba, Spain;
| | - Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Carlos Iglesias Pastrana
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - María del Amparo Martínez Martínez
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain; (J.I.S.P.); (J.V.D.B.); (A.G.A.); (C.M.N.); (C.I.P.); (M.d.A.M.M.)
- Institute of Agricultural Research and Training (IFAPA), Alameda del Obispo, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-63-853-5046 (ext. 621262)
| |
Collapse
|