1
|
Gui J, Lin W, Meng C, Cui Y, Lan W, He J, Azad MAK, Kong X. Network pharmacology and molecular docking reveal the mechanism of Chinese herb ultrafine powder improving meat nutritional value in aged laying hens. Poult Sci 2025; 104:105047. [PMID: 40138971 PMCID: PMC11985111 DOI: 10.1016/j.psj.2025.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigated the effects of dietary Chinese herb ultrafine powder (CHUP) supplementation on meat quality, plasma biochemical parameters, and fatty acid and amino acid composition in pectoral muscles of aged laying hens. A total of 576 Xinyang black-feather laying hens (300-d-old) were randomly allocated to eight groups, including the control group (fed a basal diet) and different CHUP groups (details in 'Materials and methods' section). The trial lasted 120 d. The findings showed that L-LF and L-LF-T supplementation increased the contents of polyunsaturated fatty acids and unsaturated fatty acids (P < 0.05), while CHUP supplementation increased (P < 0.05) the total essential amino acid content in pectoral muscles. Network pharmacology analysis predicted that L-LF-T supplementation mainly influenced the PPAR signaling pathway, which is associated with meat quality. These findings suggest that CHUP supplementation can enhance the nutritional value of pectoral muscles, potentially through its association with the PPAR signaling pathway in aged laying hens.
Collapse
Affiliation(s)
- Jue Gui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Wenchao Lin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chengwen Meng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - M A K Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China.
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Yu M, Wu G, Chang Y, Cai J, Wang C, Zhang D, Xu C. Comparative Transcriptomic Analysis Provides Insight into Spatiotemporal Expression Patterns of Pivotal Genes During Critical Growth Stages in Min Pig Breed. Biomolecules 2025; 15:180. [PMID: 40001483 PMCID: PMC11853420 DOI: 10.3390/biom15020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The growth and development of animals are dynamic processes characterized by fluctuations. Min pigs, a local breed renowned for their superior meat quality, present an intriguing yet poorly understood relationship between this quality and their growth and development patterns. To elucidate this relationship, we employed a multi-faceted approach that included comparative transcriptomics, quantitative real-time PCR (qRT-PCR), selection pressure analysis of key genes, and three-dimensional protein structure simulations. Our findings revealed that 150 days (150 d) of age represented a pivotal turning point in the growth and development of Min pigs. Thirteen key genes exhibiting significant differential expression between early and late growth stages were identified. Notably, the CDK2 gene demonstrated specific high expression in the hind limb muscles and adipose tissues during the later growth stages. Comparative analysis with the African warthog revealed that while the CDK2 protein structure remained conserved, base mutations in upstream and downstream non-coding regions resulted in strong positive selection pressure on the CDK2 gene. These results suggest that CDK2 plays a crucial role in defining the spatiotemporal characteristics of meat development during the domestication of Min pigs. This study provides critical insights into the growth and development patterns of domestic pigs and offers a robust scientific foundation for improving meat quality traits through domestication.
Collapse
Affiliation(s)
- Miao Yu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Guandong Wu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Yang Chang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| | - Jiancheng Cai
- China Lanxi Breeding Farm, Lanxi 151500, China; (J.C.); (C.W.)
| | - Chunan Wang
- China Lanxi Breeding Farm, Lanxi 151500, China; (J.C.); (C.W.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Chunzhu Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (G.W.); (Y.C.)
| |
Collapse
|
3
|
Li X, Xing SS, Meng SB, Hou ZY, Yu L, Chen MJ, Yuan DD, Xu HF, Cai HF, Li M. SOX6 AU controls myogenesis by cis-modulation of SOX6 in cattle. Epigenetics 2024; 19:2341578. [PMID: 38615330 PMCID: PMC11018032 DOI: 10.1080/15592294.2024.2341578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/06/2024] [Indexed: 04/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of skeletal muscle development through multiple mechanisms. The present study revealed that the lncRNA SOX6 AU (SRY-box transcription factor 6 antisense upstream) is reverse transcribed from upstream of the bovine sex-determining region Y (SRY)-related high-mobility-group box 6 (SOX6) gene. SOX6 AU was significantly differentially expressed in muscle tissue among different developmental stages in Xianan cattle. Subsequently, knockdown and overexpression experiments discovered that SOX6 AU promoted primary skeletal muscle cells proliferation, apoptosis, and differentiation in bovine. The overexpression of SOX6 AU in bovine primary skeletal muscle cells resulted in 483 differentially expressed genes (DEGs), including 224 upregulated DEGs and 259 downregulated DEGs. GO functional annotation analysis showed that muscle development-related biological processes such as muscle structure development and muscle cell proliferation were significantly enriched. KEGG pathway analysis revealed that the PI3K/AKT and MAPK signaling pathways were important pathways for DEG enrichment. Notably, we found that SOX6 AU inhibited the mRNA and protein expression levels of the SOX6 gene. Moreover, knockdown of the SOX6 gene promoted the proliferation and apoptosis of bovine primary skeletal muscle cells. Finally, we showed that SOX6 AU promoted the proliferation and apoptosis of bovine primary skeletal muscle cells by cis-modulation of SOX6 in cattle. This work illustrates our discovery of the molecular mechanisms underlying the regulation of SOX6 AU in the development of beef.
Collapse
Affiliation(s)
| | | | - Sheng-Bo Meng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhong-Yi Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lei Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Meng-Juan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dong-Dong Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hui-Fen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Han-Fang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Yang F, Chen W, Yang Y, Meng Y, Chen Y, Ding X, Zhang Y, He J, Gao N. Copy Number Variation and Selection Signal: Exploring the Domestication History and Phenotype Differences Between Duroc and the Chinese Native Ningxiang Pigs. Int J Mol Sci 2024; 25:11716. [PMID: 39519268 PMCID: PMC11546390 DOI: 10.3390/ijms252111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The Ningxiang pig, one of the well-known Chinese native pig breeds, has the advantages of tender meat, high intramuscular fat (IMF) content, and roughage tolerance, compared to the commercial lean pig breeds. The genetic basis for complex traits in Ningxiang pigs has been previously studied through other genetic markers, such as Single Nucleotide Polymorphism (SNP), while the characteristics of copy number variation (CNV) and the selection signal have not been investigated yet. In this study, GGP 50 k genotyping data of 2242 Ningxiang pigs (NX) and 1137 Duroc pigs (Duroc) were involved in CNV atlas construction and selection signals identification. Annotations of genes and quantitative trait locus (QTLs) were performed on the target candidate regions, as follows: (1) 162 CNVs were detected in Ningxiang pigs, while 326 CNVs were detected in Duroc pigs, and there are 21 copy number variation regions (CNVRs) shared between them; (2) The CNVRs of Duroc are more abundant, with 192 CNVRs, accounting for 1.61% of the entire genome, while those of Ningxiang pigs only have 98 CNVRs, accounting for 0.49%; (3) The QTLs annotated on CNVs and selected regions of Ningxiang pigs were mainly associated with meat quality and fertility. In contrast, the Duroc QTLs' notes relate primarily to the carcass and immunity, and explain why they have a higher slaughter rate and immunity; (4) There is a presence of high-frequency acquired CNVs, specifically in Ningxiang pigs, with 24 genes significantly enriched in the sensory receptor-related pathway in this region; (5) Based on the CNVs atlas, candidate genes such as 3 inositol 1,4,5-triphosphate receptor, type 3 (ITPR3), forkhead box protein K2 (FOXK2), G-protein coupled estrogen receptor 1 (GPER1), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), triosephosphate isomerase 1 (TPI1), and other candidate genes related to fat deposition and differentiation were screened. In general, this study improved our knowledge about copy number variation and selection signal information of Ningxiang pigs, which can not only further explain the genetic differences between Chinese native and Western commercial pig breeds, but also provide new materials for the analysis of the genetic basis of complex traits.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Wenwu Chen
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Yanda Yang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Yang Meng
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Yantong Chen
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xiaoling Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Yuebo Zhang
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jun He
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ning Gao
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (F.Y.); (W.C.); (Y.Y.); (Y.M.); (Y.C.); (Y.Z.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
5
|
Yi L, Li Q, Zhu J, Cheng W, Xie Y, Huang Y, Zhao H, Hao M, Wei H, Zhao S. Single-nucleus RNA sequencing and lipidomics reveal characteristics of transcriptional and lipid composition in porcine longissimus dorsi muscle. BMC Genomics 2024; 25:622. [PMID: 38902599 PMCID: PMC11188186 DOI: 10.1186/s12864-024-10488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Global per capita meat consumption continues to rise, especially pork. Meat quality is influenced by the content of intramuscular fat (IMF) as a key factor. The longissimus dorsi muscle of Dahe pigs (DHM, IMF: 7.98% ± 1.96%) and Dahe black pigs (DHBM, IMF: 3.30% ± 0.64%) was studied to explore cellular heterogeneity and differentially expressed genes (DEGs) associated with IMF deposition using single-nucleus RNA sequencing (snRNA-seq). The lipid composition was then analyzed using non-targeted lipidomics. RESULTS A total of seven cell subpopulations were identified, including myocytes, fibroblast/fibro/adipogenic progenitors (FAPs), satellite cells, endothelial cells, macrophages, pericytes, and adipocytes. Among them, FAPs and adipocytes were more focused because they could be associated with lipid deposition. 1623 DEGs in the FAPs subpopulation of DHBM were up-regulated compared with DHM, while 1535 were down-regulated. These DEGs enriched in the glycolysis/gluconeogenesis pathway. 109 DEGs were up-regulated and 806 were down-regulated in the adipocyte subpopulation of DHBM compared with DHM, which were mainly enriched in the PPAR signaling pathway and fatty acid (FA) biosynthesis. The expression level of PPARG, ABP4, LEP, and ACSL1 genes in DHM was higher than that in DHBM. Lipidomics reveals porcine lipid composition characteristics of muscle tissue. A total of 41 lipid classes and 2699 lipid species were identified in DHM and DHBM groups. The top ten relative peak areas of lipid classes in DHM and DHBM were triglyceride (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), diglyceride (DG), cardiolipin (CL), ceramides (Cer), Simple Glc series (Hex1Cer), sphingomyelin (phSM), and phosphatidylinositol (PI). The relative peak areas of 35 lipid species in DHM were lower than DHBM, and 28 lipid species that were higher. There was a significant increase in the TG fatty acyl chains C6:0, C17:0, and C11:4, and a significant decrease in C16:0, C18:1, C18:2, and C22:4 in DHBM (p < 0.05). CONCLUSIONS C16:0 FA may downregulate the expression level of PPARG gene, which leads to the downregulation of fat metabolism-related genes such as ACSL, PLIN2, and FABP4 in DHBM compared with DHM. This may be the reason that the lipid deposition ability of Dahe pigs is stronger than that of Dahe black pigs, which need further investigation.
Collapse
Affiliation(s)
- Lanlan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Qiuyan Li
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junhong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenjie Cheng
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuxiao Xie
- College of Biology and Agriculture (College of Food Science and Technology), Zunyi Normal College, Zunyi, 563006, China
| | - Ying Huang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hongye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Meilin Hao
- College of Biology and Agriculture (College of Food Science and Technology), Zunyi Normal College, Zunyi, 563006, China
| | - Hongjiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
6
|
Li Q, Hao M, Zhu J, Yi L, Cheng W, Xie Y, Zhao S. Comparison of differentially expressed genes in longissimus dorsi muscle of Diannan small ears, Wujin and landrace pigs using RNA-seq. Front Vet Sci 2024; 10:1296208. [PMID: 38249550 PMCID: PMC10796741 DOI: 10.3389/fvets.2023.1296208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Pig growth is an important economic trait that involves the co-regulation of multiple genes and related signaling pathways. High-throughput sequencing has become a powerful technology for establishing the transcriptome profiles and can be used to screen genome-wide differentially expressed genes (DEGs). In order to elucidate the molecular mechanism underlying muscle growth, this study adopted RNA sequencing (RNA-seq) to identify and compare DEGs at the genetic level in the longissimus dorsi muscle (LDM) between two indigenous Chinese pig breeds (Diannan small ears [DSE] pig and Wujin pig [WJ]) and one introduced pig breed (Landrace pig [LP]). Methods Animals under study were from two Chinese indigenous pig breeds (DSE pig, n = 3; WJ pig, n = 3) and one introduced pig breed (LP, n = 3) were used for RNA sequencing (RNA-seq) to identify and compare the expression levels of DEGs in the LDM. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Results The results revealed that for the DSE, WJ, and LP libraries, more than 66, 65, and 71 million clean reads were generated by transcriptome sequencing, respectively. A total of 11,213 genes were identified in the LDM tissue of these pig breeds, of which 7,127 were co-expressed in the muscle tissue of the three samples. In total, 441 and 339 DEGs were identified between DSE vs. WJ and LP vs. DSE in the study, with 254, 193 up-regulated genes and 187, 193 down-regulated genes in DSE compared to WJ and LP. GO analysis and KEGG signaling pathway analysis showed that DEGs are significantly related to contractile fiber, sarcolemma, and dystrophin-associated glycoprotein complex, myofibril, sarcolemma, and myosin II complex, Glycolysis/Gluconeogenesis, Propanoate metabolism, and Pyruvate metabolism, etc. In combination with functional annotation of DEGs, key genes such as ENO3 and JUN were identified by PPI network analysis. Discussion In conclusion, the present study revealed key genes including DES, FLNC, PSMD1, PSMD6, PSME4, PSMB4, RPL11, RPL13A, ROS23, RPS29, MYH1, MYL9, MYL12B, TPM1, TPM4, ENO3, PGK1, PKM2, GPI, and the unannotated new gene ENSSSCG00000020769 and related signaling pathways that influence the difference in muscle growth and could provide a theoretical basis for improving pig muscle growth traits in the future.
Collapse
Affiliation(s)
- Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meilin Hao
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
CHEN X, YANG B, LI Y, LUO R, ZHANG M, ZHANG Q, WANG J, LI R, HU L. Study on meat color stability of Qinchuan cattle during post-slaughter storage. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Wang J, Zhang Y, Wang X, Li F, Zhang D, Li X, Zhao Y, Zhao L, Xu D, Cheng J, Li W, Lin C, Yang X, Zhai R, Zeng X, Cui P, Ma Z, Liu J, Zhang X, Wang W. Association between rumen microbiota and marbling grade in Hu sheep. Front Microbiol 2022; 13:978263. [PMID: 36212835 PMCID: PMC9534374 DOI: 10.3389/fmicb.2022.978263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The marbling fat regulates the flavor of mutton and measures the fat density in the loin eye and is the most important parameter of carcass grading. The objective of this study was to explore the relationship of rumen microbiota and mutton marbling grade. One hundred and eighty-seven feedlot-finished Hu male lambs (Age: 180 day; Final BW: 46.32 ± 6.03 kg) were slaughtered, and ruminal contents and marbling grade were collected. Ruminal microbial DNA extraction and 16S rRNA gene sequencing was performed to investigate microbial composition and to predict microbial metabolic pathways. The animal cohort was then grouped based on marbling grades [low marbling (LM), marbling grade ≤ 1; Medium marbling (MM), 1 < marbling grade ≤ 3; High Marbling (HM), 3 < marbling grade ≤ 5] and intramuscular fat-associated microorganisms were pinpointed using LEfSe and random forest classification model. Intramuscular fat content had significantly differences among the three groups (P < 0.05), and was significantly correlated with VFAs profiling. HM sheep showed a higher abundance of one bacterial taxon (Kandleria), and two taxa were overrepresented in the MM sheep (Pseudobutyrivibrio and Monoglobus), respectively. In addition, the main intramuscular fat deposition pathway was found to involve peroxisome proliferator-activated receptor (PPAR) fatty acid synthesis. By studying the effect of the ruminal microbiome on the marbling of sheep, the present study provides insights into the production of high-quality mutton.
Collapse
Affiliation(s)
- Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Xiaoxue Zhang,
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Weimin Wang,
| |
Collapse
|