1
|
Chitkara M, Gurao A, Kaur H, Dige MS, Sodhi M, Mukesh M, Kataria RS. Omics approaches to understand impact of heat stress on semen quality and fertility in bovines. Anim Reprod Sci 2025; 274:107786. [PMID: 39914185 DOI: 10.1016/j.anireprosci.2025.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025]
Abstract
Recent surge in global climate change poses unprecedented challenges to traditional livestock breeding methods. In tropical countries, where large bovines are vital source of meat and milk, the escalating global warming significantly impact their productivity. Central to this challenge is the resilient ability of the animals, which directly influences the productivity. Artificial insemination (AI) programs, a cornerstone in modern livestock production, have also been severely hampered by climate change-induced heat stress, affecting the quality semen production. This stress not only affects the blood biochemical profiles of the animals but also their testicular physiology, leading to the issues such as low-quality semen with compromised freezability and fertility. Researchers have identified specific markers, including single nucleotide polymorphisms (SNPs), copy number variations (CNV), and epigenetic signatures like histone modifications, DNA methylation, and noncoding RNAs, influencing the semen quality in livestock species. Furthermore, the issue of heat stress has been addressed in a very precise way, and biomarkers have been identified, which can be integrated into the breeding programme to keep up the sire summary. Transcriptomic studies have further illuminated the temporal expression patterns of genes related to sperm quality during heat stress, pinpointing candidate genes for further exploration. This review comprehensively summarizes the progress made in understanding the intricacies of sperm biology in bovines, with a specific focus on cattle and buffalo delving into a spectrum of changes, from biochemical shifts to profound cellular alterations, including genomic, transcriptomic, and epigenetic modifications.
Collapse
Affiliation(s)
- Meenakshi Chitkara
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India; ICAR, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Harsimran Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India; ICAR, National Dairy Research Institute, Karnal, Haryana 132001, India
| | | | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Ranjit Singh Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India.
| |
Collapse
|
2
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
3
|
Chen Y, Khan MZ, Wang X, Liang H, Ren W, Kou X, Liu X, Chen W, Peng Y, Wang C. Structural variations in livestock genomes and their associations with phenotypic traits: a review. Front Vet Sci 2024; 11:1416220. [PMID: 39600883 PMCID: PMC11588642 DOI: 10.3389/fvets.2024.1416220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Genomic structural variation (SV) refers to differences in gene sequences between individuals on a genomic scale. It is widely distributed in the genome, primarily in the form of insertions, deletions, duplications, inversions, and translocations. Due to its characterization by long segments and large coverage, SVs significantly impact the genetic characteristics and production performance of livestock, playing a crucial role in studying breed diversity, biological evolution, and disease correlation. Research on SVs contributes to an enhanced understanding of chromosome function and genetic characteristics and is important for understanding hereditary diseases mechanisms. In this article, we review the concept, classification, main formation mechanisms, detection methods, and advancement of research on SVs in the genomes of cattle, buffalo, equine, sheep, and goats, aiming to reveal the genetic basis of differences in phenotypic traits and adaptive genetic mechanisms through genomic research, which will provide a theoretical basis for better understanding and utilizing the genetic resources of herbivorous livestock.
Collapse
Affiliation(s)
| | - Muhammad Zahoor Khan
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | | | | | | | | | | | | | - Yongdong Peng
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy and Agricultural Engineering Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Tian Y, An J, Zhang X, Di J, He J, Yasen A, Ma Y, Sailikehan G, Huang X, Tian K. Genome-Wide Scan for Copy Number Variations in Chinese Merino Sheep Based on Ovine High-Density 600K SNP Arrays. Animals (Basel) 2024; 14:2897. [PMID: 39409846 PMCID: PMC11476046 DOI: 10.3390/ani14192897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Sheep are a vital species in the global agricultural economy, providing essential resources such as meat, milk, and wool. Merino sheep (Junken type) are a key breed of fine wool sheep in China. However, research on fine wool traits has largely overlooked the role of SNPs and their association with phenotypes. Copy number variations (CNVs) have emerged as one of the most important sources of genetic variation, influencing phenotypic traits by altering gene expression and dosage. To generate a comprehensive CNVR map of the ovine genome, we conducted genome-wide CNV detection using genotyping data from 285 fine wool sheep. This analysis revealed 656 CNVRs, including 628 on autosomes and 28 on the X chromosome, covering a total of 43.9 Mbs of the sheep genome. The proportion of CNVRs varied across chromosomes, from 0.45% on chromosome 26 to 3.72% on chromosome 10. Functional annotation through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses highlighted significantly enriched GO terms, including odorant binding, ATP binding, and sulfuric ester hydrolase activity. The KEGG analysis identified involvement in pathways such as neuroactive ligand-receptor interaction, axon guidance, ECM-receptor interaction, the one-carbon pool by folate, and focal adhesion (p < 0.05). To validate these CNVRs, we performed quantitative real-time PCR experiments to verify copy number predictions made by PennCNV software (v1.0.5). Out of 11 selected CNVRs with predicted gain, loss, or gain-loss statuses, 8 (IDs 68, 156, 201, 284, 307, 352, 411, 601) were successfully confirmed. This study marks a significant step forward in mapping CNVs in the ovine genome and offers a valuable resource for future research on genetic variation in sheep.
Collapse
Affiliation(s)
- Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Jing An
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
- College of Animal Science and Technology, Northwest Agriculture and Forest University, Yangling, Xianyang 712100, China
| | - Xinning Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jiang Di
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Junmin He
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ayinuer Yasen
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Yanpin Ma
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi 830011, China
| | - Gaohaer Sailikehan
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
5
|
Wang H, Wu H, Zhang W, Jiang J, Qian H, Man C, Gao H, Chen Q, Du L, Chen S, Wang F. Development and validation of a 5K low-density SNP chip for Hainan cattle. BMC Genomics 2024; 25:873. [PMID: 39294563 PMCID: PMC11409743 DOI: 10.1186/s12864-024-10753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND This study aimed to design and develop a 5K low-density liquid chip for Hainan cattle utilizing targeted capture sequencing technology. The chip incorporates a substantial number of functional single nucleotide polymorphism (SNP) loci derived from public literature, including SNP loci significantly associated with immunity, heat stress, meat quality, reproduction, and other traits. Additionally, SNPs located in the coding regions of immune-related genes from the Bovine Genome Variation Database (BGVD) and Hainan cattle-specific SNP loci were included. RESULTS A total of 5,293 SNPs were selected, resulting in 9,837 DNA probes with a coverage rate of 85.69%, thereby creating a Hainan cattle-specific 5K Genotyping by Target Sequencing (GBTS) liquid chip. Evaluation with 152 cattle samples demonstrated excellent clustering performance and a detection rate ranging from 96.60 to 99.07%, with 94.5% of SNP sites exhibiting polymorphism. The chip achieved 100% gender coverage and displayed a heterozygosity rate between 14.20% and 29.65%, with a repeatability rate of 99.65-99.85%. Analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed the potential regulatory roles of exonic SNPs in immune response pathways. CONCLUSION The development and validation of the 5K GBTS liquid chip for Hainan cattle represent a valuable tool for genome analysis and genetic diversity assessment. Furthermore, it facilitates breed identification, gender determination, and kinship analysis, providing a foundation for the efficient utilization and development of local cattle genetic resources.
Collapse
Affiliation(s)
- Huan Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hui Wu
- Xinjiang Barkol Kazakh Autonomous County Animal Husbandry Veterinary Station, Barkol Kazakh Autonomous County, Xinjiang, PR China
| | - Wencan Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Junming Jiang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hejie Qian
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hongyan Gao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China.
| |
Collapse
|
6
|
Rajawat D, Panigrahi M, Nayak SS, Bhushan B, Mishra BP, Dutt T. Dissecting the genomic regions of selection on the X chromosome in different cattle breeds. 3 Biotech 2024; 14:50. [PMID: 38268984 PMCID: PMC10803714 DOI: 10.1007/s13205-023-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Mammalian X and Y chromosomes independently evolved from various autosomes approximately 300 million years ago (MYA). To fully understand the relationship between genomic composition and phenotypic diversity arising due to the course of evolution, we have scanned regions of selection signatures on the X chromosome in different cattle breeds. In this study, we have prepared the datasets of 184 individuals of different cattle breeds and explored the complete X chromosome by utilizing four within-population and two between-population methods. There were 23, 25, 30, 17, 17, and 12 outlier regions identified in Tajima's D, CLR, iHS, ROH, FST, and XP-EHH. Bioinformatics analysis showed that these regions harbor important candidate genes like AKAP4 for reproduction in Brown Swiss, MBTS2 for production traits in Brown Swiss and Guernsey, CXCR3 and CITED1 for health traits in Jersey and Nelore, and BMX and CD40LG for regulation of X chromosome inactivation in Nelore and Gir. We identified genes shared among multiple methods, such as TRNAC-GCA and IL1RAPL1, which appeared in Tajima's D, ROH, and iHS analyses. The gene TRNAW-CCA was found in ROH, CLR and iHS analyses. The X chromosome exhibits a distinctive interaction between demographic factors and genetic variations, and these findings may provide new insight into the X-linked selection in different cattle breeds.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - B. P. Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
7
|
Vaidhya A, Ghildiyal K, Rajawat D, Nayak SS, Parida S, Panigrahi M. Relevance of pharmacogenetics and pharmacogenomics in veterinary clinical practice: A review. Anim Genet 2024; 55:3-19. [PMID: 37990577 DOI: 10.1111/age.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
The recent advances in high-throughput next-generation sequencing technologies have heralded the arrival of the Big Data era. As a result, the use of pharmacogenetics in drug discovery and individualized drug therapy has transformed the field of precision medicine. This paradigm shift in drug development programs has effectively reshaped the old drug development practices, which were primarily concerned with the physiological status of patients for drug development. Pharmacogenomics bridges the gap between pharmacodynamics and pharmacokinetics, advancing current diagnostic and treatment strategies and enabling personalized and targeted drug therapy. The primary goals of pharmacogenetic studies are to improve drug efficacy and minimize toxicities, to identify novel drug targets, to estimate drug dosage for personalized medicine, and to incorporate it as a routine diagnostic for disease susceptibility. Although pharmacogenetics has numerous applications in individualized drug therapy and drug development, it is in its infancy in veterinary medicine. The objective of this review is to present an overview of historical landmarks, current developments in various animal species, challenges and future perspectives of genomics in drug development and dosage optimization for individualized medicine in veterinary subjects.
Collapse
Affiliation(s)
- Ayushi Vaidhya
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| |
Collapse
|
8
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Jain K, Bhushan B, Dutt T. Deciphering climate resilience in Indian cattle breeds by selection signature analyses. Trop Anim Health Prod 2024; 56:46. [PMID: 38233536 DOI: 10.1007/s11250-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
The signature of selection is a crucial concept in evolutionary biology that refers to the pattern of genetic variation which arises in a population due to natural selection. In the context of climate adaptation, the signature of selection can reveal the genetic basis of adaptive traits that enable organisms to survive and thrive in changing environmental conditions. Breeds living in diverse agroecological zones exhibit genetic "footprints" within their genomes that mirror the influence of climate-induced selective pressures, subsequently impacting phenotypic variance. It is assumed that the genomes of animals residing in these regions have been altered through selection for various climatic adaptations. These regions are known as signatures of selection and can be identified using various summary statistics. We examined genotypic data from eight different cattle breeds (Gir, Hariana, Kankrej, Nelore, Ongole, Red Sindhi, Sahiwal, and Tharparkar) that are adapted to diverse regional climates. To identify selection signature regions in this investigation, we used four intra-population statistics: Tajima's D, CLR, iHS, and ROH. In this study, we utilized Bovine 50 K chip data and four genome scan techniques to assess the genetic regions of positive selection for high-temperature adaptation. We have also performed a genome-wide investigation of genetic diversity, inbreeding, and effective population size in our target dataset. We identified potential regions for selection that are likely to be caused by adverse climatic conditions. We observed many adaptation genes in several potential selection signature areas. These include genes like HSPB2, HSPB3, HSP20, HSP90AB1, HSF4, HSPA1B, CLPB, GAP43, MITF, and MCHR1 which have been reported in the cattle populations that live in varied climatic regions. The findings demonstrated that genes involved in disease resistance and thermotolerance were subjected to intense selection. The findings have implications for marker-assisted breeding, understanding the genetic landscape of climate-induced adaptation, putting breeding and conservation programs into action.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
9
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
10
|
Cendron F, Cassandro M, Penasa M. Genome-wide investigation to assess copy number variants in the Italian local chicken population. J Anim Sci Biotechnol 2024; 15:2. [PMID: 38167097 PMCID: PMC10763469 DOI: 10.1186/s40104-023-00965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Copy number variants (CNV) hold significant functional and evolutionary importance. Numerous ongoing CNV studies aim to elucidate the etiology of human diseases and gain insights into the population structure of livestock. High-density chips have enabled the detection of CNV with increased resolution, leading to the identification of even small CNV. This study aimed to identify CNV in local Italian chicken breeds and investigate their distribution across the genome. RESULTS Copy number variants were mainly distributed across the first six chromosomes and primarily associated with loss type CNV. The majority of CNV in the investigated breeds were of types 0 and 1, and the minimum length of CNV was significantly larger than that reported in previous studies. Interestingly, a high proportion of the length of chromosome 16 was covered by copy number variation regions (CNVR), with the major histocompatibility complex being the likely cause. Among the genes identified within CNVR, only those present in at least five animals across breeds (n = 95) were discussed to reduce the focus on redundant CNV. Some of these genes have been associated to functional traits in chickens. Notably, several CNVR on different chromosomes harbor genes related to muscle development, tissue-specific biological processes, heat stress resistance, and immune response. Quantitative trait loci (QTL) were also analyzed to investigate potential overlapping with the identified CNVR: 54 out of the 95 gene-containing regions overlapped with 428 QTL associated to body weight and size, carcass characteristics, egg production, egg components, fat deposition, and feed intake. CONCLUSIONS The genomic phenomena reported in this study that can cause changes in the distribution of CNV within the genome over time and the comparison of these differences in CNVR of the local chicken breeds could help in preserving these genetic resources.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
- Federazione Delle Associazioni Nazionali Di Razza E Specie, Via XXIV Maggio 43, 00187, Rome, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
11
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Parida S, Bhushan B, Mishra BP, Dutt T. Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data. Mamm Genome 2023; 34:615-631. [PMID: 37843569 DOI: 10.1007/s00335-023-10021-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The main objective of the current research was to locate, annotate, and highlight specific areas of the bovine genome that are undergoing intense positive selection. Here, we are analyzing selection signatures in crossbred (Bos taurus X Bos indicus), taurine (Bos taurus), and indicine (Bos indicus) cattle breeds. Indicine cattle breeds found throughout India are known for their higher heat tolerance and disease resilience. More breeds and more methods can provide a better understanding of the selection signature. So, we have worked on nine distinct cattle breeds utilizing seven different summary statistics, which is a fairly extensive approach. In this study, we carried out a thorough genome-wide investigation of selection signatures using bovine 50K SNP data. We have included the genotyped data of two taurine, two crossbreds, and five indicine cattle breeds, for a total of 320 animals. During the 1950s, these indicine (cebuine) cattle breeds were exported with the aim of enhancing the resilience of taurine breeds in Western countries. For this study, we employed seven summary statistics, including intra-population, i.e., Tajima's D, CLR, iHS, and ROH and inter-population statistics, i.e., FST, XP-EHH, and Rsb. The NCBI database, PANTHER 17.0, and CattleQTL database were used for annotation after finding the important areas under selection. Some genes, including EPHA6, CTNNA2, NPFFR2, HS6ST3, NPR3, KCNIP4, LIPK, SDCBP, CYP7A1, NSMAF, UBXN2B, UGDH, UBE2K, and DAB1, were shown to be shared by three or more different approaches. Therefore, it gives evidence of the most intense selection in these areas. These genes are mostly linked to milk production and adaptability traits. This study also reveals selection regions that contain genes which are crucial to numerous biological functions, including those associated with milk production, coat color, glucose metabolism, oxidative stress response, immunity and circadian rhythms.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Anurodh Sharma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - B P Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| |
Collapse
|
12
|
Kumar H, Panigrahi M, G Strillacci M, Sonejita Nayak S, Rajawat D, Ghildiyal K, Bhushan B, Dutt T. Detection of genome-wide copy number variation in Murrah buffaloes. Anim Biotechnol 2023; 34:3783-3795. [PMID: 37381739 DOI: 10.1080/10495398.2023.2227670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Riverine Buffaloes, especially the Murrah breed because of their adaptability to harsh climatic conditions, is farmed in many countries to convert low-quality feed into valuable dairy products and meat. Here, we investigated the copy number variations (CNVs) in 296 Murrah buffalo using the Axiom® Buffalo Genotyping Array 90K (Affymetrix, Santa Clara, CA, USA). The CNVs were detected on the autosomes, using the Copy Number Analysis Module (CNAM) using the univariate analysis. 7937 CNVs were detected in 279 Buffaloes, the average length of the CNVs was 119,048.87 bp that ranged between 7800 and 4,561,030 bp. These CNVs were accounting for 10.33% of the buffalo genome, which was comparable to cattle, sheep, and goat CNV analyses. Further, CNVs were merged and 1541 CNVRs were detected using the Bedtools-mergeBed command. 485 genes were annotated within 196 CNVRs that were identified in at least 10 animals of Murrah population. Out of these, 40 CNVRs contained 59 different genes that were associated with 69 different traits. Overall, the study identified a significant number of CNVs and CNVRs in the Murrah breed of buffalo, with a wide range of lengths and frequencies across the autosomes. The identified CNVRs contained genes associated with important traits related to production and reproduction, making them potentially important targets for future breeding and genetic improvement efforts.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Maria G Strillacci
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | | | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
13
|
Panigrahi M, Rajawat D, Nayak SS, Ghildiyal K, Sharma A, Jain K, Lei C, Bhushan B, Mishra BP, Dutt T. Landmarks in the history of selective sweeps. Anim Genet 2023; 54:667-688. [PMID: 37710403 DOI: 10.1111/age.13355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Half a century ago, a seminal article on the hitchhiking effect by Smith and Haigh inaugurated the concept of the selection signature. Selective sweeps are characterised by the rapid spread of an advantageous genetic variant through a population and hence play an important role in shaping evolution and research on genetic diversity. The process by which a beneficial allele arises and becomes fixed in a population, leading to a increase in the frequency of other linked alleles, is known as genetic hitchhiking or genetic draft. Kimura's neutral theory and hitchhiking theory are complementary, with Kimura's neutral evolution as the 'null model' and positive selection as the 'signal'. Both are widely accepted in evolution, especially with genomics enabling precise measurements. Significant advances in genomic technologies, such as next-generation sequencing, high-density SNP arrays and powerful bioinformatics tools, have made it possible to systematically investigate selection signatures in a variety of species. Although the history of selection signatures is relatively recent, progress has been made in the last two decades, owing to the increasing availability of large-scale genomic data and the development of computational methods. In this review, we embark on a journey through the history of research on selective sweeps, ranging from early theoretical work to recent empirical studies that utilise genomic data.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Bishnu Prasad Mishra
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
14
|
Singh VK, Singh S, Nandhini PB, Bhatia AK, Dixit SP, Ganguly I. Comparative genomic diversity analysis of copy number variations (CNV) in indicine and taurine cattle thriving in Europe and Indian subcontinent. Anim Biotechnol 2023; 34:3483-3494. [PMID: 36592947 DOI: 10.1080/10495398.2022.2162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copy number variations (CNVs) include deletions, duplications, and insertions that are larger than 50 bp in size causing structural variation responsible for diversity, adaptation, and breed development. Indian cattle breeds are highly diverse from the taurine breeds. The pattern of CNVRs in 191 animals belonging to 39 cattle breeds (four Indicine and 35 Taurine) was studied based on Illumina 777K BovineHD chip data. The Indicine breeds revealed 2590 CNVs and 335 copy number variation regions (CNVRs) in autosomes. Out of the identified CNVs, 50 were found to be novel. Structure analysis revealed admixed nature of Siri. Neighbor joining tree from CNVR data showed that hot (Kankrej and Hallikar) and cold (Ladakhi and Siri) adapted cattle breeds clustered separately. CNVR of Indian and European breeds revealed that Balkan and Italian breeds of Podolian group are admixed with Indian cattle breeds corroborating indicine introgression (6.1-13.5%). CNVRs spanning the regions of olfactory receptors and immune system genes were identified. AMOVA revealed 9% variation among populations which is 2% greater than SNP based studies showing higher inclusion of variation by CNVR. Detailed analysis of CNVs/CNVRs in Indian cattle adapted to hot and cold climate, and their diversity among worldwide cattle is presented in this study.
Collapse
Affiliation(s)
- V K Singh
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Singh
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - P B Nandhini
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - A K Bhatia
- Animal Genetic Resources Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - S P Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - I Ganguly
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
15
|
Rajawat D, Panigrahi M, Nayak SS, Ghildiyal K, Sharma A, Kumar H, Parida S, Bhushan B, Gaur GK, Mishra BP, Dutt T. Uncovering genes underlying coat color variation in indigenous cattle breeds through genome-wide positive selection. Anim Biotechnol 2023; 34:3920-3933. [PMID: 37493405 DOI: 10.1080/10495398.2023.2240387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The identification of candidate genes related to pigmentation and under selective sweep provides insights into the genetic basis of pigmentation and the evolutionary forces that have shaped this variation. The selective sweep events in the genes responsible for normal coat color in Indian cattle groups are still unknown. To find coat color genes displaying signs of selective sweeps in the indigenous cattle, we compiled a list of candidate genes previously investigated for their association with coat color and pigmentation. After that, we performed a genome-wide scan of positive selection signatures using the BovineSNP50K Bead Chip in 187 individuals of seven indigenous breeds. We applied a wide range of methods to find evidence of selection, such as Tajima's D, CLR, iHS, varLD, ROH, and FST. We found a total of sixteen genes under selective sweep, that were involved in coat color and pigmentation physiology. These genes are CRIM1 in Gir, MC1R in Sahiwal, MYO5A, PMEL and POMC in Tharparkar, TYRP1, ERBB2, and ASIP in Red Sindhi, MITF, LOC789175, PAX3 and TYR in Ongole, and IRF2, SDR165 and, KIT in Nelore, ADAMTS19 in Hariana. These genes are related to melanin synthesis, the biology of melanocytes and melanosomes, and the migration and survival of melanocytes during development.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Subhashree Parida
- Pharmacology and Toxicology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - G K Gaur
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - B P Mishra
- Animal Biotechnology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
16
|
Chen J, Wang Y, Qi X, Cheng H, Chen N, Ahmed Z, Chen Q, Lei C, Yang X. Genome-wide analysis emancipates genomic diversity and signature of selection in Altay white-headed cattle of Xinjiang, China. Front Genet 2023; 14:1144249. [PMID: 37065480 PMCID: PMC10098193 DOI: 10.3389/fgene.2023.1144249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Altay white-headed cattle have not received enough attention for several reasons. Due to irrational breeding and selection practices, the number of pure Altay white-headed cattle has decreased significantly and the breed is now on the eve of extinction. The genomic characterization will be a crucial step towards understanding the genetic basis of productivity and adaptability to survival under native Chinese agropastoral systems; nevertheless, no attempt has been made in Altay white-headed cattle. In the current study, we compared the genomes of 20 Altay white-headed cattle to the genomes of 144 individuals in representative breeds. Population genetic diversity revealed that the nucleotide diversity of Altay white-headed cattle was less than that of indicine breeds and comparable to that of Chinese taurus cattle. Using population structure analysis, we also found that Altay white-headed cattle carried the ancestry of the European and East Asian cattle lineage. In addition, we used three different methods (FST, θπ ratio and XP-EHH) to investigate the adaptability and white-headed phenotype of Altay white-headed cattle and compared it with Bohai black cattle. We found EPB41L5, SCG5 and KIT genes on the list of the top one percent genes, these genes might have an association with environmental adaptability and the white-headed phenotype for this breed. Our research reveals the distinctive genomic features of Altay white-headed cattle at the genome-wide level.
Collapse
Affiliation(s)
- Jialei Chen
- Life Science College, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yushu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xingshan Qi
- Biyang Xianan Cattle Technology and Development Company Ltd., Biyang, China
| | - Haijian Cheng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zulfiqar Ahmed
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Shabestar, Pakistan
| | - Qiuming Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Chuzhao Lei, ; Xueyi Yang,
| | - Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, China
- *Correspondence: Chuzhao Lei, ; Xueyi Yang,
| |
Collapse
|
17
|
Genome-Wide Detection and Analysis of Copy Number Variation in Anhui Indigenous and Western Commercial Pig Breeds Using Porcine 80K SNP BeadChip. Genes (Basel) 2023; 14:genes14030654. [PMID: 36980927 PMCID: PMC10047991 DOI: 10.3390/genes14030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Copy number variation (CNV) is an important class of genetic variations widely associated with the porcine genome, but little is known about the characteristics of CNVs in foreign and indigenous pig breeds. We performed a genome-wide comparison of CNVs between Anhui indigenous pig (AHIP) and Western commercial pig (WECP) breeds based on data from the Porcine 80K SNP BeadChip. After analysis using the PennCNV software, we detected 3863 and 7546 CNVs in the AHIP and WECP populations, respectively. We obtained 225 (loss: 178, gain: 47) and 379 (loss: 293, gain: 86) copy number variation regions (CNVRs) randomly distributed across the autosomes of the AHIP and WECP populations, accounting for 10.90% and 22.57% of the porcine autosomal genome, respectively. Functional enrichment analysis of genes in the CNVRs identified genes related to immunity (FOXJ1, FOXK2, MBL2, TNFRSF4, SIRT1, NCF1) and meat quality (DGAT1, NT5E) in the WECP population; these genes were a loss event in the WECP population. This study provides important information on CNV differences between foreign and indigenous pig breeds, making it possible to provide a reference for future improvement of these breeds and their production performance.
Collapse
|
18
|
Ghildiyal K, Panigrahi M, Kumar H, Rajawat D, Nayak SS, Lei C, Bhushan B, Dutt T. Selection signatures for fiber production in commercial species: A review. Anim Genet 2023; 54:3-23. [PMID: 36352515 DOI: 10.1111/age.13272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Natural fibers derived from diverse animal species have gained increased attention in recent years due to their favorable environmental effects, long-term sustainability benefits, and remarkable physical and mechanical properties that make them valuable raw materials used for textile and non-textile production. Domestication and selective breeding for the economically significant fiber traits play an imperative role in shaping the genomes and, thus, positively impact the overall productivity of the various fiber-producing species. These selection pressures leave unique footprints on the genome due to alteration in the allelic frequencies at specific loci, characterizing selective sweeps. Recent advances in genomics have enabled the discovery of selection signatures across the genome using a variety of methods. The increased demand for 'green products' manufactured from natural fibers necessitates a detailed investigation of the genomes of the various fiber-producing plant and animal species to identify the candidate genes associated with important fiber attributes such as fiber diameter/fineness, color, length, and strength, among others. The objective of this review is to present a comprehensive overview of the concept of selection signature and selective sweeps, discuss the main methods used for its detection, and address the selection signature studies conducted so far in the diverse fiber-producing animal species.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
19
|
Ibrahim S, Al-Sharif M, Younis F, Ateya A, Abdo M, Fericean L. Analysis of Potential Genes and Economic Parameters Associated with Growth and Heat Tolerance in Sheep ( Ovis aries). Animals (Basel) 2023; 13:ani13030353. [PMID: 36766241 PMCID: PMC9913162 DOI: 10.3390/ani13030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This study explored the potential genes and economic factors that might be associated with growth and heat tolerance in two sheep breeds. Data on growth performance from the third month to six months of age were obtained based on records. In comparison to Aboudeleik lambs, Barki lambs developed considerably greater starting body weight, final body weight, final body weight gain, daily weight gain, and percentage increase in BW/month. Single nucleotide polymorphisms (SNPs) were found between lambs of the two breeds using PCR-DNA sequencing of CAST, LEP, MYLK4, MEF2B, STAT5A, TRPV1, HSP90AB1, HSPB6, HSF1, ST1P1, and ATP1A1 genes. Lambs from each breed were divided into groups based on detected SNPs in genes related to growth. The least squares means of the differentiated groups revealed a significant correlation of detected SNPs with growth and heat tolerance attributes (p ≤ 0.05). Barki lambs elicited greater total variable costs, total costs, total return, and net return values. The Barki sheep provided the best economic efficiency value when comparing the percentage difference between net profit and economic efficiency. Together with economic considerations, SNPs found may be used as proxies for marker-assisted selection of the best breed of sheep for traits related to growth and heat tolerance.
Collapse
Affiliation(s)
- Samer Ibrahim
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Fawzy Younis
- Animal and Poultry Physiology Department, Animal and Poultry Division, Desert Research Center, Cairo 11753, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +2-01003-541921; Fax: +2-050-2372592
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| |
Collapse
|
20
|
Pal D, Panigrahi M, Chhotaray S, Kumar H, Nayak SS, Rajawat D, Parida S, Gaur GK, Dutt T, Bhushan B. Unraveling genetic admixture in the Indian crossbred cattle by different approaches using Bovine 50K BeadChip. Trop Anim Health Prod 2022; 54:135. [PMID: 35292868 DOI: 10.1007/s11250-022-03133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
With the upsurge of crossbreeding in India, the admixture levels are highly unpredictable in the composite breeds. Hence, in the present study, 72 Vrindavani animals were assessed for the level of admixture from their known ancestors that are Holstein-Friesian, Jersey, Brown Swiss, and Hariana, through three different software, namely, STRUCTURE, ADMIXTURE, and frappe. The genotype data for ancestral breeds were obtained from a public repository, i.e., DRYAD. The Frieswal crossbred cattle along with ancestral breeds like Holstein-Friesian and Sahiwal were also investigated for the level of admixture with the help of the above-mentioned software. The Frieswal population was found to comprise an average of 62.49, 61.12, and 61.21% of Holstein-Friesian and 37.50, 38.88, and 38.80% of Sahiwal estimated through STRUCTURE, ADMIXTURE, and frappe, respectively. The Vrindavani population was found to consist of on average 39.5, 42.4, and 42.3% of Holstein-Friesian; 22.9, 22.3, and 21.7% of Jersey; 10.7, 10.6, and 11.9% of Brown Swiss; and 26.9, 24.7, and 24.1% of Hariana blood estimated through STRUCTURE, ADMIXTURE, and frappe, respectively. A greater degree of variation was noted in the results from STRUCTURE vs. frappe, STRUCTURE vs. ADMIXTURE than in ADMIXTURE vs. frappe. From this study, we conclude that the admixture analysis based on a single software should be validated through the use of many different approaches for better prediction of admixture levels.
Collapse
Affiliation(s)
- Dhan Pal
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India.
| | - Supriya Chhotaray
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Subhashree Parida
- Division of Veterinary Pharmacology & Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - G K Gaur
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| |
Collapse
|