1
|
Wang D, Cao G, Li X, Cheng X, Guo Z, Li L, Su H, Zhang K, Zhang Y, Zhang M, Zhao F, Zhao Y, Liang J, Liu Y, Zhang Y. Design, Screening, and Impact of sgRNAs Targeting Bovine Prolactin Gene Receptor on Embryonic Development Using Stably Transfected Cell Lines. BIOLOGY 2025; 14:425. [PMID: 40282290 PMCID: PMC12024835 DOI: 10.3390/biology14040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
This study designed three sgRNAs (sgRNA139, sgRNA128, and sgRNA109) targeting the prolactin gene receptor (PRLR) in fetal cattle, utilized Cas9 to cleave endogenous DNA, and screened stable cell lines for somatic cell nuclear transfer experiments to investigate the impact of different editing sites on embryonic development. The results showed that sgRNA139 had the highest cleavage efficiency (Fcut = 0.65, Indels = 42.19%), while sgRNA109 had the lowest (Fcut = 0.45, Indels = 35.31%). No significant differences were observed in cell growth status after electroporation (p > 0.05), and the transfection efficiency exceeded 90% after five days of culture. In the evaluation of key embryonic development indicators, sgRNA109 significantly reduced the cleavage rate and blastocyst rate (p < 0.01), whereas sgRNA139 showed no significant effect on the cleavage rate (p > 0.05), but its blastocyst rate was slightly lower than that of the control group (p > 0.05). This study demonstrates that highly specific sgRNAs and stable edited cell lines used as donor cells can significantly regulate the later stages of embryonic development. This study not only provides new experimental evidence for the functional study of the PRLR but also lays an important theoretical foundation for the innovation of molecular breeding technologies in dairy cattle.
Collapse
Affiliation(s)
- Daqing Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xin Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Xin Cheng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Zhihui Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Lu Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Hong Su
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Min Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Feifei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Yifan Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Junxi Liang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Yiyi Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Yong Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.C.); (X.L.); (X.C.); (Z.G.); (L.L.); (H.S.); (K.Z.); (Y.Z.); (M.Z.); (F.Z.); (Y.Z.); (J.L.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| |
Collapse
|
2
|
Lang LI, Wang ZZ, Liu B, Chang-Qing SHEN, Jing-Yi TU, Shi-Cheng WANG, Rui-Ling LEI, Si-Qi PENG, Xiong XIAO, Yong-Ju ZHAO, Qiu XY. The effects and mechanisms of heat stress on mammalian oocyte and embryo development. J Therm Biol 2024; 124:103927. [PMID: 39153259 DOI: 10.1016/j.jtherbio.2024.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
The sum of nonspecific physiological responses exhibited by mammals in response to the disruption of thermal balance caused by high-temperature environments is referred to as heat stress (HS). HS affects the normal development of mammalian oocyte and embryos and leads to significant economic losses. Therefore, it is of great importance to gain a deep understanding of the mechanisms underlying the effects of HS on oocyte and embryonic development and to explore strategies for mitigating or preventing its detrimental impacts in the livestock industry. This article provides an overview of the negative effects of HS on mammalian oocyte growth, granulosa cell maturation and function, and embryonic development. It summarizes the mechanisms by which HS affects embryonic development, including generation of reactive oxygen species (ROS), endocrine disruption, the heat shock system, mitochondrial autophagy, and molecular-level alterations. Furthermore, it discusses various measures to ameliorate the effects of HS, such as antioxidant use, enhancement of mitochondrial function, gene editing, cultivating varieties possessing heat-resistant genes, and optimizing the animals'rearing environment. This article serves as a valuable reference for better understanding the relationship between HS and mammalian embryonic development as well as for improving the development of mammalian embryos and economic benefits under HS conditions in livestock production.
Collapse
Affiliation(s)
- L I Lang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Zhen-Zhen Wang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Bin Liu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - S H E N Chang-Qing
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - T U Jing-Yi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - W A N G Shi-Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - L E I Rui-Ling
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - P E N G Si-Qi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - X I A O Xiong
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Z H A O Yong-Ju
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xiao-Yan Qiu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
3
|
Chen H, Wu Y, Zhu Y, Luo K, Zheng S, Tang H, Xuan R, Huang Y, Li J, Xiong R, Fang X, Wang L, Gong Y, Miao J, Zhou J, Tan H, Wang Y, Wu L, Ouyang J, Huang M, Yan X. Deciphering the Genetic Landscape: Insights Into the Genomic Signatures of Changle Goose. Evol Appl 2024; 17:e13768. [PMID: 39175938 PMCID: PMC11340016 DOI: 10.1111/eva.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
The Changle goose (CLG), a Chinese indigenous breed, is celebrated for its adaptability, rapid growth, and premium meat quality. Despite its agricultural value, the exploration of its genomic attributes has been scant. Our study entailed whole-genome resequencing of 303 geese across CLG and five other Chinese breeds, revealing distinct genetic diversity metrics. We discovered significant migration events from Xingguo gray goose to CLG and minor gene flow between them. We identified genomic regions through selective sweep analysis, correlating with CLG's unique traits. An elevated inbreeding coefficient in CLG, alongside reduced heterozygosity and rare single nucleotide polymorphisms (RSNPs), suggests a narrowed genetic diversity. Genomic regions related to reproduction, meat quality, and growth were identified, with the GATA3 gene showing strong selection signals for meat quality. A non-synonymous mutation in the Sloc2a1 gene, which is associated with reproductive traits in the CLG, exhibited significant differences in allelic frequency. The roles of CD82, CDH8, and PRKAB1 in growth and development, alongside FABP4, FAF1, ESR1, and AKAP12 in reproduction, were highlighted. Additionally, Cdkal1 and Mfsd14a may influence meat quality. This comprehensive genetic analysis underpins the unique genetic makeup of CLG, providing a basis for its conservation and informed breeding strategies.
Collapse
Affiliation(s)
- Hao Chen
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yan Wu
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yihao Zhu
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Keyi Luo
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Sumei Zheng
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Hongbo Tang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Rui Xuan
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yuxuan Huang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Jiawei Li
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Rui Xiong
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Xinyan Fang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Lei Wang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yujie Gong
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Junjie Miao
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Jing Zhou
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Hongli Tan
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Yanan Wang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Liping Wu
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Jing Ouyang
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| | - Min Huang
- College of Animal Sciences & TechnologyZhejiang A&F UniversityHangzhouChina
| | - Xueming Yan
- College of Life SciencesJiangxi Science and Technology Normal UniversityNanchangChina
| |
Collapse
|
4
|
Liu D, Xu Z, Zhao W, Wang S, Li T, Zhu K, Liu G, Zhao X, Wang Q, Pan Y, Ma P. Genetic parameters and genome-wide association for milk production traits and somatic cell score in different lactation stages of Shanghai Holstein population. Front Genet 2022; 13:940650. [PMID: 36134029 PMCID: PMC9483179 DOI: 10.3389/fgene.2022.940650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the genetic parameters and genetic architectures of six milk production traits in the Shanghai Holstein population. The data used to estimate the genetic parameters consisted of 1,968,589 test-day records for 305,031 primiparous cows. Among the cows with phenotypes, 3,016 cows were genotyped with Illumina Bovine SNP50K BeadChip, GeneSeek Bovine 50K BeadChip, GeneSeek Bovine LD BeadChip v4, GeneSeek Bovine 150K BeadChip, or low-depth whole-genome sequencing. A genome-wide association study was performed to identify quantitative trait loci and genes associated with milk production traits in the Shanghai Holstein population using genotypes imputed to whole-genome sequences and both fixed and random model circulating probability unification and a mixed linear model with rMVP software. Estimated heritabilities (h2) varied from 0.04 to 0.14 for somatic cell score (SCS), 0.07 to 0.22 for fat percentage (FP), 0.09 to 0.27 for milk yield (MY), 0.06 to 0.23 for fat yield (FY), 0.09 to 0.26 for protein yield (PY), and 0.07 to 0.35 for protein percentage (PP), respectively. Within lactation, genetic correlations for SCS, FP, MY, FY, PY, and PP at different stages of lactation estimated in random regression model were ranged from -0.02 to 0.99, 0.18 to 0.99, 0.04 to 0.99, 0.04 to 0.99, 0.01 to 0.99, and 0.33 to 0.99, respectively. The genetic correlations were highest between adjacent DIM but decreased as DIM got further apart. Candidate genes included those related to production traits (DGAT1, MGST1, PTK2, and SCRIB), disease-related (LY6K, COL22A1, TECPR2, and PLCB1), heat stress-related (ITGA9, NDST4, TECPR2, and HSF1), and reproduction-related (7SK and DOCK2) genes. This study has shown that there are differences in the genetic mechanisms of milk production traits at different stages of lactation. Therefore, it is necessary to conduct research on milk production traits at different stages of lactation as different traits. Our results can also provide a theoretical basis for subsequent molecular breeding, especially for the novel genetic loci.
Collapse
Affiliation(s)
- Dengying Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tuowu Li
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Xiaoduo Zhao
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Peipei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|