1
|
Wang Y, Zhang Z, Zhang Y, Wang J, Lyu S, Liu X, Qi X, Ma W, Lei C, Wang E, Huang Y. Regulatory role of TEX10 gene in proliferation differentiation and apoptosis of bovine myoblasts. Int J Biochem Cell Biol 2025; 182-183:106771. [PMID: 40086620 DOI: 10.1016/j.biocel.2025.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Skeletal muscle is a crucial tissue involved in body movement and energy metabolism, and its growth and development directly influence the economic value of livestock. This study investigates the effects of the TEX10 gene on the proliferation, differentiation, and apoptosis of bovine myoblasts, as well as the underlying molecular mechanisms. Using techniques such as CCK-8, EdU incorporation, qPCR, Western blotting, and immunofluorescence, we observed that TEX10 significantly promotes the expression of cell cycle factors, including CDK2 and PCNA, thereby increasing cell proliferation and the proportion of cells in the S phase. Overexpression and knockdown experiments demonstrated that TEX10 enhances the differentiation and myotube formation of myoblasts, while upregulating key genes such as MYOG and MYOD. Additionally, flow cytometry analysis of the cell cycle revealed that TEX10 inhibits apoptosis in bovine myoblasts. Transcriptomic analysis showed that TEX10 regulates several signaling pathways associated with proliferation, differentiation, and apoptosis, including PI3K-Akt, cAMP, and IL-17. Overall, these findings suggest that TEX10 plays a significant regulatory role in bovine muscle growth, providing a theoretical foundation for molecular breeding strategies aimed at improving yellow cattle.
Collapse
Affiliation(s)
- Yongpan Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China.
| | - Zijing Zhang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.
| | - Yuqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jiamei Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China.
| | - Shijie Lyu
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.
| | - Xian Liu
- Henan Provincial Livestock Technology Promotion Station, Zhengzhou, Henan 450008, People's Republic of China.
| | - Xingshan Qi
- Biyang County Xiananniu Technology Development Co., Ltd, 463700, People's Republic of China.
| | - Weidong Ma
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Fufeng, Shaanxi 722203, People's Republic of China.
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China.
| | - Eryao Wang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
2
|
Guo J, Wang J, Zhang K, Yang Z, Li B, Pan Y, Yu H, Yu S, Abbas Raza SH, Kuraz Abebea B, Zan L. Molecular cloning of TPM3 gene in qinchuan cattle and its effect on myoblast proliferation and differentiation. Anim Biotechnol 2024; 35:2345238. [PMID: 38775564 DOI: 10.1080/10495398.2024.2345238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Tropomyosin 3 (TPM3) plays a significant role as a regulatory protein in muscle contraction, affecting the growth and development of skeletal muscles. Despite its importance, limited research has been conducted to investigate the influence of TPM3 on bovine skeletal muscle development. Therefore, this study revealed the role of TPM3 in bovine myoblast growth and development. This research involved conducting a thorough examination of the Qinchuan cattle TPM3 gene using bioinformatics tools to examine its sequence and structural characteristics. Furthermore, TPM3 expression was evaluated in various bovine tissues and cells using quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the coding region of TPM3 spans 855 bp, with the 161st base being the T base, encoding a protein with 284 amino acids and 19 phosphorylation sites. This protein demonstrated high conservation across species while displaying a predominant α-helix secondary structure despite being an unstable acidic protein. Notably, a noticeable increase in TPM3 expression was observed in the longissimus dorsi muscle and myocardium of calves and adult cattle. Expression patterns varied during different stages of myoblast differentiation. Functional studies that involved interference with TPM3 in Qinchuan cattle myoblasts revealed a very significantly decrease in S-phase cell numbers and EdU-positive staining (P < 0.01), and disrupted myotube morphology. Moreover, interference with TPM3 resulted in significantly (P < 0.05) or highly significantly (P < 0.01) decreased mRNA and protein levels of key proliferation and differentiation markers, indicating its role in the modulation of myoblast behavior. These findings suggest that TPM3 plays an essential role in bovine skeletal muscle growth by influencing myoblast proliferation and differentiation. This study provides a foundation for further exploration into the mechanisms underlying TPM3-mediated regulation of bovine muscle development and provides valuable insights that could guide future research directions as well as potential applications for livestock breeding and addressing muscle-related disorders.
Collapse
Affiliation(s)
- Juntao Guo
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Bingzhi Li
- Yangling Vocational and Technical College, Yangling, China
| | - Yueting Pan
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Hengwei Yu
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Belete Kuraz Abebea
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A and F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| |
Collapse
|
3
|
Jiang C, Zhang J, Song Y, Song X, Wu H, Jiao R, Li L, Zhang G, Wei D. FOXO1 regulates bovine skeletal muscle cells differentiation by targeting MYH3. Int J Biol Macromol 2024; 260:129643. [PMID: 38253149 DOI: 10.1016/j.ijbiomac.2024.129643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
The growth and development of bovine skeletal muscle and beef yield is closely intertwined. Our previous research found that forkhead box O1 (FOXO1) plays an important role in the regulation of beef muscle formation, but its specific mechanism is still unknown. In this study, we aimed to clarify the regulatory mechanism of FOXO1 in proliferation and differentiation of bovine skeletal muscle cells (BSMCs). The results showed that interfering with FOXO1 can promote proliferation and the cell G1/S phase of BSMCs by up-regulating the expression of PCNA, CDK1, CDK2, CCNA2, CCNB1, CCND1 and CCNE2. Besides, interfering with FOXO1 inhibited the apoptosis of BSMCs by up-regulating the expression of anti-apoptosis gene BCL2, while simultaneously down-regulating the expression of the pro-apoptosis genes BAD and BAX. Inversely, interfering with FOXO1 can promote the differentiation of BSMCs by up-regulating the expression of myogenic differentiation marker genes MYOD, MYOG, MYF5, MYF6 and MYHC. Furthermore, RNA-seq combined with western bolt, immunofluorescence and chromatin immunoprecipitation analysis showed that FOXO1 could regulate BSMCs differentiation process by influencing PI3K-Akt, Relaxin and TGF-beta signaling pathways, and target MYH3 for transcriptional inhibition. In conclusion, this study provides a basis for studying the role and molecular mechanism of FOXO1 in BSMCs.
Collapse
Affiliation(s)
- Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750021, China
| | - Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Ruopu Jiao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Lanlan Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Guijie Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|