Huang H, Cen J, Yang D, Li L, Li C, Yang X, Wang Y, Hu X, Wang J, Cai Q. Isolation and characterization of antioxidant peptides from
oyster (
Crassostrea rivularis) protein enzymatic hydrolysates.
Food Sci Nutr 2023;
11:261-273. [PMID:
36655069 PMCID:
PMC9834847 DOI:
10.1002/fsn3.3058]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 01/21/2023] Open
Abstract
Peptides from oysters have several bioactive functions. In this study, we identified antioxidant peptides from oysters (Crassostrea rivularis) and investigated their structure-function relationship. We used an 8 kDa molecular-weight (MW) cut-off membrane and semiprep reversed-phase liquid chromatography to collect five peptides (F1-F5) and identified the highest-abundance ion-peak sequences AWVDY (F1), MSFRFY(F2), EPLRY(F3), RKPPWPP(F4), and YAKRCFR(F5) having MWs of 652, 850, 676, 877, and 943 Da, respectively, using ultra-performance liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry. These peptides exhibited high antioxidant activities, similar to butylated hydroxytoluene, reduced glutathione, and ascorbic acid. F5 demonstrated the highest scavenging activity for DPPH radicals (IC50 = 21.75 μg/ml), hydroxyl radicals (IC50 = 18.75 μg/ml), and superoxide radicals (IC50 = 11.00 μg/ml), while F3 demonstrated the highest reducing power. Furthermore, F5 significantly protected Caco-2 cells from H2O2-induced oxidative damage. These results suggest that the antioxidant peptide F5 is a promising food additive that protects against oxidative damage.
Collapse