1
|
Kaynarca GB, Yağcilar Ç, Kamer DDA, Gümüş T, Çetin İ, Koç ST. Gelatins derived from aronia-supplemented fish diets: Structural effect and molecular simulation. Int J Biol Macromol 2025; 295:139623. [PMID: 39798730 DOI: 10.1016/j.ijbiomac.2025.139623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Fish gelatin, a sustainable substitute for mammalian gelatin, frequently exhibits weaker gel strength and thermal stability, limiting its industrial uses. This study investigated an in vivo method to improve functional characteristics by supplementing Nile tilapia diets with Aronia extract. The control diet (A0) contained no Aronia extract, while the remaining four diets consisted of commercial pelleted feed enriched with 250 mg/kg (A250), 500 mg/kg (A500), 750 mg/kg (A750), and 1000 mg/kg (A1000) of Aronia extract. The gelatin samples revealed thermo-reversible behavior with increasing temperature. A250 exhibited the highest melting temperature of 29.65 °C, compared to 27.43 °C for A0. The gelation temperature for A250 was 17.56 °C, indicating a relatively stable gelatin structure. The elastic modulus (G') was the highest in A250, suggesting an improved gel network compared to the other samples. The gelation rate constant (kgel) was highest in A250 (540.67 Pa), followed by A750 (447.32 Pa), A500 (393.85 Pa), and A1000 (370.97 Pa), compared to 391.15 Pa for A0. The gel strength was improved, with A250 showing the highest value at 133.9 g, followed by A750, A1000, and A500, while A0 was 102.1 g. The glass transition temperatures (Tg) for A250, fish gelatin (FG), bovine gelatin (BG), and A0 were 76.72 °C, 74.31 °C, 70.71 °C, and 73.52 °C, respectively. Molecular docking studies revealed strong binding interactions between A250 and phenolic compounds, which contributed to the observed structural enhancements. These findings suggest that supplementing fish diets with Aronia extract can substantially enhance gelatin quality, offering a promising alternative to traditional gelatin sources.
Collapse
Affiliation(s)
- Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | - Çetin Yağcilar
- Department of Hydrobiology, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Deniz Damla Altan Kamer
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Tuncay Gümüş
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey.
| | - İsmail Çetin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Serim Tuna Koç
- Department of Biotechnological Genetics, Institute of Science, Trakya University, Edirne, Turkey
| |
Collapse
|
2
|
Mottalib MA, Islam MH, Dhar MC, Akhtar K, Goni MA. Preparation and Characterization of New Biodegradable Packaging Materials Based on Gelatin Extracted from Tenualosa ilisha Fish Scales with Cellulose Nanocrystals. ACS OMEGA 2024; 9:51175-51190. [PMID: 39758644 PMCID: PMC11696422 DOI: 10.1021/acsomega.4c07015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/07/2025]
Abstract
Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method. GE and CNCs have been isolated from prawn shells and jute fiber, respectively. Utilization of Hilsa Tenualosa ilisha fish scale biowaste was a new and first approach for gelatin extraction. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis spectroscopy, and scanning electron microscopy (SEM) were used to examine the functional and morphological features of fish scale gelatin, chitosan, CNCs, and the resulting composite films. The synthesized film materials were analyzed for their mechanical strength, solubility, apparent density, swelling behavior, biodegradability, light transmittance, and transparency. The impregnation of CNCs into the polymer amalgam milieu effectively enhanced their physicochemical and biological properties. The degree of swelling in composite matrices was found to be increased gradually, whereas the solubility was decreased due to the cross-linking effect of CNCs. Elongation at break in the gelatin-chitosan (GC) film was observed as 48%. However, the incorporation of CNCs into the GC matrix potentially enhanced the elongation at break property to 64.05%, 62.86%, and 59.21% in GC1, GC2, and GC3 bioplastic films, respectively. The purified chitosan-gelatin films showed a tensile strength of 12.24 N/mm2, which was increased to 13.93 N/mm2 with the addition of 1.00% CNCs. The composite films were found to be highly transparent and stable in an ambient atmosphere. However, 49-60% deformation occurred in the composite materials after 7 days, whereas 71-84% biodegradation was realized after 21 days, when the respective composite films were subjected to a natural soil environment. These novel composite films possess all essential interesting features, such as biocompatibility, transparency, smoothness of surfaces, and biodegradability, making them suitable for use as packaging materials in different industries.
Collapse
Affiliation(s)
- Md. Abdul Mottalib
- Institute
of Leather Engineering and Technology, University
of Dhaka, Dhaka 1209, Bangladesh
| | - Md. Hasan Islam
- Institute
of Leather Engineering and Technology, University
of Dhaka, Dhaka 1209, Bangladesh
| | - Mohon Chandra Dhar
- Institute
of Leather Engineering and Technology, University
of Dhaka, Dhaka 1209, Bangladesh
| | - Kawsar Akhtar
- Institute
of Leather Engineering and Technology, University
of Dhaka, Dhaka 1209, Bangladesh
| | - Md. Abdul Goni
- Department
of Biological and Physical Sciences, South
Carolina State University, Orangeburg, South Carolina 29117, United States
| |
Collapse
|
3
|
Mušič B, Pečnik JG, Pondelak A. Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity. Polymers (Basel) 2024; 16:2195. [PMID: 39125221 PMCID: PMC11314626 DOI: 10.3390/polym16152195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Protein-based fish adhesives have historically been used in various bonding applications; however, due to the protein's high affinity for water absorption, these adhesives become destabilized in high-moisture environments, resulting in reduced bondline strength and early failure. This limitation makes them unsuitable for industrial applications with higher demands. To address this issue, water-insoluble raw powder materials such as iron, copper, or zeolite were incorporated into natural fish adhesives. In this study, the hygroscopicity, dry matter content, thermal analysis (TGA/DSC), FT-IR spectroscopy, surface tension measurements, vapour permeability, and scanning electron microscope (SEM) of the modified adhesives were determined. In addition, the bonding properties of the modified adhesives were evaluated by the tensile shear strength of the lap joints, and mould growth was visually inspected. The resulting modified protein-based adhesives demonstrated improved stability in high humidity environments. Enhancing the hygroscopic properties of protein-based fish adhesives has the potential to unlock new opportunities and applications, providing a healthier and more environmentally sustainable alternative to petroleum-based adhesives.
Collapse
Affiliation(s)
- Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia;
| | | | - Andreja Pondelak
- Slovenian National Building and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia;
| |
Collapse
|
4
|
Eknapakul T, Kuimalee S, Sailuam W, Daengsakul S, Tanapongpisit N, Laohana P, Saenrang W, Bootchanont A, Khamkongkaeo A, Yimnirun R. Impacts of pre-treatment methods on the morphology, crystal structure, and defects formation of hydroxyapatite extracted from Nile tilapia scales. RSC Adv 2024; 14:4614-4622. [PMID: 38318621 PMCID: PMC10839550 DOI: 10.1039/d3ra07556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
The comprehensive control of hydroxyapatite (HAp), involving morphological and structural variations, particle sizes, and defect formations, has garnered considerable attention for its versatile functionalities, rendering it applicable in diverse contexts. This work examined the shape, structure and optical characteristics, and defect formation in hydroxyapatite (HAp) extracted from Nile tilapia (Oreochromis niloticus) scales with various pre-treatments through experiments and density functional theory (DFT) calculations. Utilizing scanning electron microscopy, our findings revealed that dried fish scales (FS-D) exhibited a layered pattern of collagen fibers, while boiled fish scales (FS-B) had smoother surfaces and significantly reduced collagen content. After calcination, the FS-D sample produced nanorods with an average length of 150 ± 44 nm, whereas the FS-B samples yielded agglomerated spherical particles whose size increased with the rising calcining temperature. In-depth analysis through X-ray diffraction and Fourier-transform infrared spectroscopy confirmed the presence of biphasic calcium phosphates in the FS-B samples, while the FS-D sample presented a pure HAp phase. The boiled fish scale calcined at 800 °C (FS-B800) exhibited an optical band gap (Eg) of 5.50 eV, whereas the dried fish scale calcined at 800 °C (FS-D800) showed two Eg values of 2.87 and 3.97 eV, as determined by UV-visible spectroscopy. DFT calculations revealed that the band gap of 3.97 eV correlated with OH- vacancies, while that of 2.87 eV indicated Mn-substituted HAp, explaining the blue powder. The Eg value for the white powder resembled pure HAp, S- and Cl- substituted OH- vacancies, and various cations substituting Ca sites of HAp. Different pre-treatment procedures influence the characteristics of HAp, offering opportunities for applications in bone replacement and scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Tanachat Eknapakul
- Functional Materials and Nanotechnology Center of Excellence, School of Science, Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Surasak Kuimalee
- Industrial Chemistry Innovation Programme, Faculty of Science, Maejo University Chiang Mai 50290 Thailand
| | - Wutthigrai Sailuam
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology ISAN (Khon Kaen Campus) Khon Kaen 40000 Thailand
| | - Sujittra Daengsakul
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Nantawat Tanapongpisit
- School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Peerawat Laohana
- School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Wittawat Saenrang
- School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Atipong Bootchanont
- Smart Materials Research Unit, Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi Pathumthani 12110 Thailand
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi Pathumthani 12110 Thailand
| | - Atchara Khamkongkaeo
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University Phayathai Road, Wangmai Pathumwan Bangkok 10330 Thailand +66-2-218-6943
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University Bangkok Thailand
| | - Rattikorn Yimnirun
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology VISTEC Wangchan Rayong 21210 Thailand
| |
Collapse
|
5
|
Abu Elella MH, Aamer N, Abdallah HM, López-Maldonado EA, Mohamed YMA, El Nazer HA, Mohamed RR. Novel high-efficient adsorbent based on modified gelatin/montmorillonite nanocomposite for removal of malachite green dye. Sci Rep 2024; 14:1228. [PMID: 38216651 PMCID: PMC10786822 DOI: 10.1038/s41598-024-51321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Shortage of drinking water has gained potential interest over the last few decades. Discharged industrial effluent, including various toxic pollutants, to water surfaces is one of the most serious environmental issues. The adsorption technique has become a widely studied method for the removal of toxic pollutants, specifically synthetic dyes, from wastewater due to its cost-effectiveness, high selectivity, and ease of operation. In this study, a novel gelatin-crosslinked-poly(acrylamide-co-itaconic acid)/montmorillonite (MMT) nanoclay nanocomposites-based adsorbent has been prepared for removing malachite green (MG) dye from an aqueous solution. Modified gelatin nanocomposites were synthesized using a free-radical polymerization technique in the presence and absence of MMT. Various analytical instrumentation: including FTIR, FESEM, XRD, and TEM techniques were used to elucidate the chemical structure and surface morphology of the prepared samples. Using a batch adsorption experiment, Langmuir isotherm model showed that the prepared modified gelatin nanocomposite had a maximum adsorption capacity of 950.5 mg/g using 350 mg/L of MG dye at pH 9 within 45 min. Furthermore, the regeneration study showed good recyclability for the obtained nanocomposite through four consecutive reusable cycles. Therefore, the fabricated gelatin nanocomposite is an attractive adsorbent for MG dye elimination from aqueous solutions.
Collapse
Affiliation(s)
| | - Nema Aamer
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki , Giza, 12622, Egypt
| | - Eduardo A López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP: 22390, Tijuana, Baja California, Mexico
| | - Yasser M A Mohamed
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Hossam A El Nazer
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Riham R Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
6
|
Naharros‐Molinero A, Caballo‐González MÁ, de la Mata FJ, García‐Gallego S. Shell Formulation in Soft Gelatin Capsules: Design and Characterization. Adv Healthc Mater 2024; 13:e2302250. [PMID: 37775861 PMCID: PMC11468233 DOI: 10.1002/adhm.202302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Soft gelatin capsules (SGCs) are the most widely used pharmaceutical form after tablets. The active components, active pharmaceutical ingredients (APIs), or nutrients are dissolved, dispersed, or suspended in a liquid or semisolid fill, which is covered with a gelatin shell. Several factors can modify the properties of the gelatin shell and subsequently affect their operative handling during manufacturing process and the stability of the soft gelatin capsules. Three elements appear to be crucial: the shell formulation (type and content of the different components such as gelatins-source, extraction method-plasticizers, or additives); the manufacture and storage conditions (temperature, humidity, light) as well as the interactions between fill-shell formulas. Mechanical and thermal analysis arise as straightforward but highly useful tools to monitor the properties of the gelatin shell. This review provides an updated overview on the shell formulation and design. Additionally, it presents the uses of mechanical and thermal techniques to characterize and evaluate the impact of different parameters on the gelatin behavior over the production and stability of these pharmaceutical forms. This will help to detect changes that are yet not visible by visual inspection ensuring a suitable finished product over its shelf-life.
Collapse
Affiliation(s)
- Almudena Naharros‐Molinero
- BerliMed S.A.Alcalá de Henares28806Spain
- University of AlcalaFaculty of SciencesDepartment of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río”Alcalá de Henares28801Spain
| | | | - F. Javier de la Mata
- University of AlcalaFaculty of SciencesDepartment of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río”Alcalá de Henares28801Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS)Madrid28034Spain
- Networking Research Center on BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| | - Sandra García‐Gallego
- University of AlcalaFaculty of SciencesDepartment of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río”Alcalá de Henares28801Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS)Madrid28034Spain
- Networking Research Center on BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN)Madrid28029Spain
| |
Collapse
|
7
|
Khushboo, Kaushik N, Widell KN, Slizyte R, Kumari A. Optimization of single-step gelatin extraction from pink perch (Nemipterus japonicus) skin and bone obtained from surimi industry using a green solvent. J Food Sci 2023; 88:5044-5062. [PMID: 37876355 DOI: 10.1111/1750-3841.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Surimi industry produces a large quantity of byproducts that are currently being utilized to produce low-value commodities. This study aims to extract gelatin from pink perch skin and bone obtained from the surimi industry using a green single-step extraction method. In addition to using a green solvent, that is, acetic acid, the new method combines the multiple steps of pre-treatment and hydrolysis into one single-step extraction process. Response surface methodology was used to optimize extraction parameters (pH, temperature, and time) to maximize yield and l-hydroxyproline (l-hyp) content. The optimum condition for gelatin extraction was obtained at pH 3, 75°C, and 30 min. At optimum conditions, gelatin yield and l-hyp content were observed to be 16.07% and 41.26 mg g-1 , respectively. The gelatin obtained at optimized condition was further compared with commercial bovine gelatin (BG) in terms of chemical composition and textural, functional, and rheological properties. The results suggested that the optimized pink perch gelatin had higher protein content (92.06%), better gel strength (251.08 g), higher imino acid (18.01%), and improved textural and functional properties than the commercially available BG. The optimized single-step gelatin extraction method from pink perch skin and bones is a promising, rapid, and efficient method for the production of good-quality gelatin, which can be further used for the development of high-value products such as food formulations. PRACTICAL APPLICATION: Fish gelatin is widely used in food product development. Most of the existing methods of the development of high-value product such as gelatin, use multi-step process and harsh mineral acid, therefore, are time-consuming and harmful to the environment. This study provides a green single-step gelatin extraction method that provides an efficient, rapid, and convenient method of gelatin extraction and a sustainable solution for fish industry byproduct utilization. The data obtained with this laboratory-scale study provides a strong basis for scale-up studies.
Collapse
Affiliation(s)
- Khushboo
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | | | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Asha Kumari
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
8
|
Gallo N, Terzi A, Sibillano T, Giannini C, Masi A, Sicuro A, Blasi FS, Corallo A, Pennetta A, De Benedetto GE, Montagna F, Maffezzoli A, Sannino A, Salvatore L. Age-Related Properties of Aquaponics-Derived Tilapia Skin ( Oreochromis niloticus): A Structural and Compositional Study. Int J Mol Sci 2023; 24:ijms24031938. [PMID: 36768265 PMCID: PMC9916702 DOI: 10.3390/ijms24031938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
In the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness. Among fish species, Nile Tilapia is the second-most farmed species in the world and its skin is commonly chosen as a collagen extraction source. However, to the best of our knowledge, no studies have been carried out to investigate, in depth, the age-related differences in fish skin with the final aim of selecting the most advantageous fish size for collagen extraction. In this work, the impact of age on the structural and compositional properties of Tilapia skin was evaluated with the aim of selecting the condition that best lends itself to the extraction of type I collagen for biomedical applications, based on the known fact that the properties of the original tissue have a significant impact on those of the final product. Performed analysis showed statistically significant age-related differences. In particular, an increase in skin thickness (+110 µm) and of wavy-like collagen fiber bundle diameter (+3 µm) besides their organization variation was observed with age. Additionally, a preferred collagen molecule orientation along two specific directions was revealed, with a higher fiber orientation degree according to age. Thermal analysis registered a shift of the endothermic peak (+1.7 °C) and an increase in the enthalpy (+3.3 J/g), while mechanical properties were found to be anisotropic, with an age-dependent brittle behavior. Water (+13%) and ash (+0.6%) contents were found to be directly proportional with age, as opposed to protein (-8%) and lipid (-10%) contents. The amino acid composition revealed a decrease in the valine, leucine, isoleucine, and threonine content and an increase in proline and hydroxyproline. Lastly, fatty acids C14:0, C15:0, C16:1, C18:2n6c, C18:3n6, C18:0, C20:3n3, and C23:0 were revealed to be upregulated, while C18:1n9c was downregulated with age.
Collapse
Affiliation(s)
- Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Teresa Sibillano
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
- Correspondence:
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sicuro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Federica Stella Blasi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Angelo Corallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Pennetta
- Department of Cultural Heritage, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | | | - Francesco Montagna
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alfonso Maffezzoli
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Vittorio Veneto, 73036 Muro Leccese, Italy
| |
Collapse
|
9
|
Effect of acidic and alkaline pretreatment on functional, structural and thermal properties of gelatin from waste fish scales. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Alcântara L, Sousa J, Martins ME, Silva AL, Souza Filho MDS, Souza B. Evaluation of Surface Properties of Chitosan and Scale Gelatin Coatings on Shrimp Fillets ( Litopenaeus vannamei). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2133581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lyndervan Alcântara
- Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | - Juliana Sousa
- Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | | | - André Luis Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | | | - Bartolomeu Souza
- Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
11
|
Effect of extraction methods on the properties of tilapia scale gelatins. Int J Biol Macromol 2022; 221:1150-1160. [PMID: 36113590 DOI: 10.1016/j.ijbiomac.2022.09.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022]
Abstract
Three types of tilapia scale gelatins (hot water-pretreated gelatin, HWG; acetic acid-pretreated gelatin, AAG; and pepsin enzyme-pretreated gelatin, PEG) were extracted and their gel strength, foaming properties, and emulsifying properties were analyzed. They had different gel strength values: AAG (370 ± 10 g Bloom) > HWG (320 ± 10 g Bloom) > PEG (280 ± 10 g Bloom). The creaming index values of tilapia scale gelatin-stabilized fish oil-loaded emulsions were dependent on gelatin type (HWG ≈ AAG > PEG) at low gelatin concentration (2 mg/mL), whereas they were similar and low (8-10 %) at high gelatin concentration (10 mg/mL). Extraction methods had no consistently significant effects on the gelatin foaming properties. In summary, tilapia scale gelatins had better gel strength and foaming properties and similar or even better emulsifying properties than mammalian gelatins. Therefore, tilapia scales could be a potential source of gelatins to replace mammalian gelatins.
Collapse
|
12
|
Gao Q, Shang Y, Zhou W, Deng S, Peng C. Marine collagen peptides: A novel biomaterial for the healing of oral mucosal ulcers. Dent Mater J 2022; 41:850-859. [PMID: 35934799 DOI: 10.4012/dmj.2021-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to analyze the therapeutic effects of marine collagen peptides (MCPs) from tilapia skin on oral mucosal ulcers in a rat model. CCK-8 and wound healing assays were performed in vitro to evaluate proliferation and migration of L929 cells after treatment with MCPs. The effects of MCPs on the healing of oral mucosal ulcers in a rat model were macroscopically and microscopically analyzed in vivo. Results showed that MCPs promoted proliferation and migration of L929 cells. Moreover, 75%MCPs enhanced the ulcer healing process, suppressed inflammatory response and up-regulated the expression levels of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). MCPs are potentially used as a new therapeutic strategy for oral mucosal ulceration.
Collapse
Affiliation(s)
- Qiuying Gao
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Yuli Shang
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Weiwei Zhou
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Shu Deng
- Henry M Goldman School of Dental Medicine, Boston University
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
13
|
Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers (Basel) 2022; 14:polym14091865. [PMID: 35567034 PMCID: PMC9103308 DOI: 10.3390/polym14091865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.
Collapse
|
14
|
Yang H, Wang H, Huang M, Cao G, Tao F, Zhou G, Shen Q, Yang H. Repurposing fish waste into gelatin as a potential alternative for mammalian sources: A review. Compr Rev Food Sci Food Saf 2022; 21:942-963. [PMID: 35181993 DOI: 10.1111/1541-4337.12920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023]
Abstract
Mammalian gelatin is extensively utilized in the food industry because of its physicochemical properties. However, its usage is restricted and essentially prohibited for religious people. Fish gelatin is a promising alternative with no religious and social restrictions. The desirable properties of fish gelatin can be significantly improved by various methods, such as the addition of active compounds, enzymes, and natural crosslinking agents (e.g., plant phenolics and genipin), and nonthermal physical treatments (e.g., ionizing radiation and high pressure). The aim of this study was to explore whether the properties of fish gelatin (gel strength, melting or gelling temperature, odor, viscosity, sensory properties, film-forming ability, etc.) could be improved to make it comparable to mammalian gelatin. The structure and properties of gelatins obtained from mammalian and fish sources are summarized. Moreover, the modification methods used to ameliorate the properties of fish gelatin, including rheological (gelling temperature from 13-19°C to 23-25°C), physicochemical (gel strengths from ∼200 to 250 g), and thermal properties (melting points from ∼25 to 30°C), are comprehensively discussed. The relevant literature reviewed and the technological advancements in the industry can propel the development of fish gelatin as a potential alternative to mammalian gelatin, thereby expanding its competitive market share with increasing utility.
Collapse
Affiliation(s)
- Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Haifeng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Min Huang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.,Department of Food Science and Technology, National University of Singapore, Singapore
| | - Guangtian Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Guanghong Zhou
- China Key Laboratory of Meat Processing and Quality Control, Ministry of Education; Key Laboratory of Animal Products Processing, Ministry of Agriculture; Jiangsu Collaborative Innovation Center of Meat Production and Processing; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore
| |
Collapse
|
15
|
Extraction and Characterization of Gelatin from Skin By-Products of Seabream, Seabass and Rainbow Trout Reared in Aquaculture. Int J Mol Sci 2021; 22:ijms222212104. [PMID: 34829985 PMCID: PMC8620335 DOI: 10.3390/ijms222212104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
The expansion of fish filleting, driven by the increasing demand for convenience food, concomitantly generates a rising amount of skinning by-products. Current trends point to a growing share of aquaculture in fish production, so we have chosen three established aquaculture species to study the properties of gelatin extracted from their skin: rainbow trout, commonly filleted; and seabass and seabream, marketed whole until very recently. In the first case, trout skin yields only 1.6% gelatin accompanied by the lowest gel strength (96 g bloom), while yield for the other two species exceeds 6%, and gel strength reaches 181 and 229 g bloom for seabass and seabream, respectively. These results are in line with the proportion of total imino acids analyzed in the gelatin samples. Molecular weight profiling shows similarities among gelatins, but seabass and seabream gelatins appear more structured, with higher proportion of β-chains and high molecular weight aggregates, which may influence the rheological properties observed. These results present skin by-products of seabream, and to a minor extent seabass, as suitable raw materials to produce gelatin through valorization processes.
Collapse
|
16
|
Physicochemical and Antioxidant Properties of Gelatin and Gelatin Hydrolysates Obtained from Extrusion-Pretreated Fish ( Oreochromis sp.) Scales. Mar Drugs 2021; 19:md19050275. [PMID: 34068988 PMCID: PMC8156103 DOI: 10.3390/md19050275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Fish gelatin and its hydrolysates exhibit a variety of biological characteristics, which include antihypertensive and antioxidant properties. In this study, fish gelatins were extracted from extrusion-pretreated tilapia scales, and then subjected to analyses to determine the physicochemical properties and antioxidant activity of the extracted gelatins. Our findings indicate that TSG2 (preconditioned with 1.26% citric acid) possessed the greatest extraction yield, as well as higher antioxidant activities compared with the other extracted gelatins. Hence, TSG2 was subjected to further hydrolyzation using different proteases and ultrafiltration conditions, which yielded four gelatin hydrolysates: TSGH1, TSGH2, TSGH3, and TSGH4. The results showed that TSGH4 (Pepsin + Pancreatin and ultrafiltration < 3000 Da) had a higher yield and greater antioxidant activity in comparison with the other gelatin hydrolysates. As such, TSGH4 was subjected to further fractionation using a Superdex peptide column and two-stage reverse-phase column HPLC chromatography, yielding a subfraction TSGH4-6-2-b, which possessed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity compared with the other fractions. Further LC-ESI/MS/MS analysis of TSGH4-6-2-b suggested two novel peptides (GYDEY and EPGKSGEQGAPGEAGAP), which could have potential as naturally-occurring peptides with antioxidant properties. These promising results suggest that these antioxidant peptides could have applications in food products, nutraceuticals, and cosmetics.
Collapse
|
17
|
Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110963. [DOI: 10.1016/j.msec.2020.110963] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|
18
|
Pinto JT, Wutscher T, Stankovic-Brandl M, Zellnitz S, Biserni S, Mercandelli A, Kobler M, Buttini F, Andrade L, Daza V, Ecenarro S, Canalejas L, Paudel A. Evaluation of the Physico-mechanical Properties and Electrostatic Charging Behavior of Different Capsule Types for Inhalation Under Distinct Environmental Conditions. AAPS PharmSciTech 2020; 21:128. [PMID: 32399597 PMCID: PMC7217808 DOI: 10.1208/s12249-020-01676-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Capsule-based dry powder inhaler (DPI) products can be influenced by a multitude of interacting factors, including electrostatic charging. Tribo-charging is a process of charge transfer impacted by various factors, i.e., material surface characteristics, mechanical properties, processing parameters and environmental conditions. Consequently, this work aimed to assess how the charging behavior of capsules intended for inhalation might be influenced by environmental conditions. Capsules having different chemical compositions (gelatin and hydroxypropyl methylcellulose (HPMC)) and distinct inherent characteristics from manufacturing (thermally and cold-gelled) were exposed to various environmental conditions (11%, 22% and 51% RH). Their resulting properties were characterized and tribo-charging behavior was measured against stainless steel and PVC. It was observed that all capsule materials tended to charge to a higher extent when in contact with PVC. The tribo-charging of the thermally gelled HPMC capsules (Vcaps® Plus) was more similar to the gelatin capsules (Quali-G™-I) than to their HPMC cold-gelled counterparts (Quali-V®-I). The sorption of water by the capsules at different relative humidities notably impacted their properties and tribo-charging behavior. Different interactions between the tested materials and water molecules were identified and are proposed to be the driver of distinct charging behaviors. Finally, we showed that depending on the capsule types, distinct environmental conditions are necessary to mitigate charging and assure optimal behavior of the capsules.
Collapse
|
19
|
Alcântara LO, Martins MEDO, Sousa JR, Cerqueira MÂ, Silva ALC, Souza Filho MDSM, Souza BWS. Wettability of edible coatings on Nile tilapia fillets (Oreochromis niloticus). J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|