1
|
Afika N, Saniy AF, Fawwaz Dharma AA, Ko CK, Kamran R, Permana AD. Trilayer dissolving microneedle for transdermal delivery of minoxidil: a proof-of-concept study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1750-1770. [PMID: 38718083 DOI: 10.1080/09205063.2024.2350187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/26/2024] [Indexed: 07/30/2024]
Abstract
Alopecia areata (AA) is a chronic autoimmune disease characterized by bald patches in certain areas of the body, especially the scalp. Minoxidil (MNX), as a first-line treatment of AA, effectively induces hair growth. However, oral and topical administration pose problems, including low bioavailability, risk of uncontrolled hair growth, and local side effects such as burning hair loss, and scalp irritation. In the latest research, MNX was delivered to the skin via microneedle (MN) transdermally. The MNX concentration was distributed throughout the needle so that drug penetration was reduced and had the potential to irritate. In this study, we formulated MNX into three-layer dissolving microneedles (TDMN) to increase drug penetration and avoid irritation. Physicochemical evaluation, parafilm, was used to evaluate the mechanical strength of TDMN and showed that TDMN could penetrate the stratum corneum. The ex-vivo permeation test showed that the highest average permeation result was obtained for TDMN2, namely 165.28 ± 31.87 ug/cm2, while for Minoxidil cream it was 46.03 ± 8.5 ug/cm2. The results of ex vivo and in vivo dermatokinetic tests showed that the amount of drug concentration remaining in the skin from the TDMN2 formula was higher compared to the cream preparation. The formula developed has no potential for irritation and toxicity based on the HET-CAM test and hemolysis test. TDMN is a promising alternative to administering MNX to overcome MNX problems and increase the effectiveness of AA therapy.
Collapse
Affiliation(s)
- Nur Afika
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | | | | | - Rayu Kamran
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
2
|
Gao Y, Du L, Li Q, Li Q, Zhu L, Yang M, Wang X, Zhao B, Ma S. How physical techniques improve the transdermal permeation of therapeutics: A review. Medicine (Baltimore) 2022; 101:e29314. [PMID: 35777055 PMCID: PMC9239599 DOI: 10.1097/md.0000000000029314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Transdermal delivery is very important in pharmaceutics. However, the barrier function of the stratum corneum hinders drugs absorption. How to improve transdermal delivery efficiency is a hot topic. The key advantages of physical technologies are their wide application for the delivery of previously nonappropriate transdermal drugs, such as proteins, peptides, and hydrophilic drugs. Based on the improved permeation of drugs delivered via multiple physical techniques, many more diseases may be treated, and transdermal vaccinations become possible. However, their wider application depends on the related convenient and portable devices. Combined products comprising medicine and devices represent future commercial directions of artificial intelligence and 3D printing. METHODS A comprehensive search about transdermal delivery assisted by physical techniques has been carried out on Web of Science, EMBASE database, PubMed, Wanfang Database, China National Knowledge Infrastructure, and Cochrane Library. The search identified and retrieved the study describing multiple physical technologies to promote transdermal penetration. RESULTS Physical technologies, including microneedles, lasers, iontophoresis, sonophoresis, electroporation, magnetophoresis, and microwaves, are summarized and compared. The characteristics, mechanism, advantages and disadvantages of physical techniques are clarified. The individual or combined applicable examples of physical techniques to improve transdermal delivery are summarized. CONCLUSION This review will provide more useful guidance for efficient transdermal delivery. More therapeutic agents by transdermal routes become possible with the assistance of various physical techniques.
Collapse
Affiliation(s)
- Yan Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lina Du
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qian Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qi Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiu Wang
- School of Medicine, Bengbu Medical University, Bengbu, China
| | - Bonian Zhao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Control Release 2022; 347:561-589. [PMID: 35525331 DOI: 10.1016/j.jconrel.2022.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Dissolvable transdermal microneedles (μND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, μNDs must pierce the human stratum corneum (~10 to 20 μm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable μND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, μND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the μND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia; Vaxxas Pty Ltd, Brisbane, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Basil Hetzel institute for Translational Health Research, Adelaide, SA 5001, Australia.
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney. NSW 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
4
|
Hu W, Bian Q, Zhou Y, Gao J. Pain management with transdermal drug administration: A review. Int J Pharm 2022; 618:121696. [PMID: 35337906 DOI: 10.1016/j.ijpharm.2022.121696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 12/31/2022]
Abstract
Pain management is an urgent issue to solve with complex mechanisms. Localized acute pain requires rapid and accurate delivery of drugs with less distribution in the blood circulation while chronic pain requires controlled release of drugs with long drug retention time. The transdermal route, a promising way with high patient compliance was known for painless delivery, long drug retention time, stable blood concentration, easily controlled dosage and release rate as well as the fewer side effects. This review presents transdermal route for pain management according to the different sites of action which drugs aim to reach, and illustrates different analgesic mechanisms, dosage forms, transdermal enhancements and clinical applications. In addition, the review concludes the difference of pain types and presents the future aims of pain management, thereby providing a reference for researches focusing on percutaneous analgesia.
Collapse
Affiliation(s)
- Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations , Changzhou 213149, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China.
| |
Collapse
|
5
|
Bhadale RS, Londhe VY. A systematic review of carbohydrate-based microneedles: current status and future prospects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:89. [PMID: 34331594 PMCID: PMC8325649 DOI: 10.1007/s10856-021-06559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/07/2021] [Indexed: 06/01/2023]
Abstract
Microneedles (MNs) are minimally invasive tridimensional biomedical devices that bypass the skin barrier resulting in systemic and localized pharmacological effects. Historically, biomaterials such as carbohydrates, due to their physicochemical properties, have been used widely to fabricate MNs. Owing to their broad spectrum of functional groups, carbohydrates permit designing and engineering with tunable properties and functionalities. This has led the carbohydrate-based microarrays possessing the great potential to take a futuristic step in detecting, drug delivery, and retorting to biologicals. In this review, the crucial and extensive summary of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose, and starch has been discussed systematically, using PRISMA guidelines. It also discusses different approaches for drug delivery and the mechanical properties of biomaterial-based MNs, till date, progress has been achieved in clinical translation of carbohydrate-based MNs, and regulatory requirements for their commercialization. In conclusion, it describes a brief perspective on the future prospects of carbohydrate-based MNs referred to as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Rupali S Bhadale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
6
|
Zhu DD, Zhang XP, Zhang BL, Hao YY, Guo XD. Safety Assessment of Microneedle Technology for Transdermal Drug Delivery: A Review. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dan Dan Zhu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bao Li Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yu Ying Hao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
7
|
A compendium of current developments on polysaccharide and protein-based microneedles. Int J Biol Macromol 2019; 136:704-728. [PMID: 31028807 DOI: 10.1016/j.ijbiomac.2019.04.163] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/14/2023]
Abstract
Microneedles (MNs), i.e. minimally invasive three-dimensional microstructures that penetrate the stratum corneum inducing relatively little or no pain, have been studied as appealing therapeutic vehicles for transdermal drug delivery. Over the last years, the fabrication of MNs using biopolymers, such as polysaccharides and proteins, has sparked the imagination of scientists due to their recognized biocompatibility, biodegradability, ease of fabrication and sustainable character. Owing to their wide range of functional groups, polysaccharides and proteins enable the design and preparation of materials with tunable properties and functionalities. Therefore, these biopolymer-based MNs take a revolutionary step offering great potential not only in drug administration, but also in sensing and response to physiological stimuli. In this review, a critical and comprehensive overview of the polysaccharides and proteins employed in the design and engineering of MNs will be given. The strategies adopted for their preparation, their advantages and disadvantages will be also detailed. In addition, the potential and challenges of using these matrices to deliver drugs, vaccines and other molecules will be discussed. Finally, this appraisal ends with a perspective on the possibilities and challenges in research and development of polysaccharide and protein MNs, envisioning the future advances and clinical translation of these platforms as the next generation of drug delivery systems.
Collapse
|