1
|
Zyubin A, Lavrova A, Dogonadze M, Borisov E, Postnikov EB. Single-cell analysis of Mycobacterium tuberculosis with diverse drug resistance using surface-enhanced Raman spectroscopy (SERS). PeerJ 2025; 13:e18830. [PMID: 39872033 PMCID: PMC11771305 DOI: 10.7717/peerj.18830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025] Open
Abstract
In this work, we investigated individual bacteria M. tuberculosis belonging to strains of the Beijing family with different drug sensitivity (sensitive, multi and extensive drug-resistant) by surface-enhanced Raman spectroscopy (SERS) in the fingerprint region. The latter is focused on the spectral bands, which correspond to a set of glutathione bands and DNA methylation patterns revealed due to 5-methylcytosine spectral biomarkers. It is shown that these spectral features can be correlated with drug sensitivity and DNA methylation. Thus, since this kind of diagnostics is fast and operates with individual cells, it can be considered a promising tool, which significantly shortens the time required for a strain's type identification necessary to prescribe adequate therapy.
Collapse
Affiliation(s)
- Andrey Zyubin
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Anastasia Lavrova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Saint-Petersburg, Russia
- Immanuel Kant Federal University, Kaliningrad, Russia
| | - Marine Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Saint-Petersburg, Russia
| | | | | |
Collapse
|
2
|
Lin F. Tuberculous meningitis diagnosis and treatment: classic approaches and high-throughput pathways. Front Immunol 2025; 15:1543009. [PMID: 39867878 PMCID: PMC11757110 DOI: 10.3389/fimmu.2024.1543009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Tuberculous meningitis (TBM), a severe form of non-purulent meningitis caused by Mycobacterium tuberculosis (Mtb), is the most critical extrapulmonary tuberculosis (TB) manifestation, with a 30-40% mortality rate despite available treatment. The absence of distinctive clinical symptoms and effective diagnostic tools complicates early detection. Recent advancements in nucleic acid detection, genomics, metabolomics, and proteomics have led to novel diagnostic approaches, improving sensitivity and specificity. This review focuses on nucleic acid-based methods, including Xpert Ultra, metagenomic next-generation sequencing (mNGS), and single-cell sequencing of whole brain Tissue, alongside the diagnostic potential of metabolomic and proteomic biomarkers. By evaluating the technical features, diagnostic accuracy, and clinical applicability, this review aims to inform the optimization of TBM diagnostic strategies and explores the integration and clinical translation of multi-omics technologies.
Collapse
Affiliation(s)
- Fangbo Lin
- Rehabilitation Medicine Department, The Affiliated Changsha Hospital of Xiangya School
of Medicine, Central South University (The First Hospital of Changsha, Changsha, China
| |
Collapse
|
3
|
Zhang TP, Li R, Wang LJ, Huang Q, Li HM. Roles of the m6A methyltransferases METTL3, METTL14, and WTAP in pulmonary tuberculosis. Front Immunol 2022; 13:992628. [PMID: 36569923 PMCID: PMC9768477 DOI: 10.3389/fimmu.2022.992628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The aim of the current study was to investigate the contributing role of gene variation and transcription levels among the m6A methyltransferases METTL3, METTL14, and WTAP in pulmonary tuberculosis (PTB). Methods A case-control study including 461 PTB patients and 467 normal controls was designed for genotyping. Three SNPs in METTL3 (rs1061027, rs1139130, rs1061026), three SNPs in METTL14 (rs62328061, rs4834698, rs1064034), and two SNPs in WTAP (rs1853259, rs11752345) were genotyped via the SNPscan™ technique. METTL3, METTL14, and WTAP transcription levels were determined in 78 PTB patients and 86 controls via quantitative real-time reverse-transcription PCR. Results Frequencies of the METTL14 rs62328061 GG genotype, WTAP rs11752345 CT genotype, and T allele were significantly increased in PTB patients compared to controls. An increased risk of rs62328061 was detected in a recessive model, and a decreased risk of rs11752345 was detected in a dominant model in the PTB group. METTL3 gene variation was not associated with PTB risk. The METTL3 rs1139130 GG genotype was significantly increased with drug resistance, and the G allele was significantly decreased with drug-induced liver injury in PTB patients. A reduced frequency of the METTL14 rs62328061 G allele was associated with leukopenia, a reduced frequency of the WTAP rs11752345 T allele was associated with sputum smear positivity, and a higher frequency of the METTL14 rs4834698 TC genotype was evident in PTB patients with hypoproteinemia. Compared to controls, METTL3, METTL14, and WTAP transcription levels in PTB patients were significantly decreased, and the level of WTAP was increased in PTB patients with drug resistance. METTL3 level was negatively associated with erythrocyte sedimentation rate and aspartate aminotransferase, and METTL14 level was negatively correlated with alanine aminotransferase and aspartate aminotransferase. Conclusion METTL14 rs62328061 and WTAP rs11752345 variants were associated with the genetic background of PTB, and METTL3, METTL14, and WTAP levels were abnormally decreased, suggesting that these m6A methyltransferases may play important roles in PTB.
Collapse
Affiliation(s)
- Tian-Ping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Li
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Jun Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Huang
- Department of Public Health, Medical Department, Qinghai University, Xining, China
| | - Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,*Correspondence: Hong-Miao Li,
| |
Collapse
|
4
|
Wu Z, Tan Q, Zhang C, Zhao Y, Liao Q, Yu M, Xu L, Wang J, Liang H, Li H, Chen L, Chen X, Wei W. mbtD and celA1 association with ethambutol resistance in Mycobacterium tuberculosis: A multiomics analysis. Front Cell Infect Microbiol 2022; 12:959911. [PMID: 36118032 PMCID: PMC9471152 DOI: 10.3389/fcimb.2022.959911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Ethambutol (EMB) is a first-line antituberculosis drug currently being used clinically to treat tuberculosis. Mutations in the embCAB operon are responsible for EMB resistance. However, the discrepancies between genotypic and phenotypic EMB resistance have attracted much attention. We induced EMB resistance in Mycobacterium tuberculosis in vitro and used an integrated genome–methylome–transcriptome–proteome approach to study the microevolutionary mechanism of EMB resistance. We identified 509 aberrantly methylated genes (313 hypermethylated genes and 196 hypomethylated genes). Moreover, some hypermethylated and hypomethylated genes were identified using RNA-seq profiling. Correlation analysis revealed that the differential methylation of genes was negatively correlated with transcription levels in EMB-resistant strains. Additionally, two hypermethylated candidate genes (mbtD and celA1) were screened by iTRAQ-based quantitative proteomics analysis, verified by qPCR, and corresponded with DNA methylation differences. This is the first report that identifies EMB resistance-related genes in laboratory-induced mono-EMB-resistant M. tuberculosis using multi-omics profiling. Understanding the epigenetic features associated with EMB resistance may provide new insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhuhua Wu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Qiuchan Tan
- School of Basic Medical Sciences, Guangzhou Health Science College, Guangzhou, China
| | - Chenchen Zhang
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Yuchuan Zhao
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Qinghua Liao
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Meiling Yu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Liuyue Xu
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Jiawen Wang
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Hongdi Liang
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Haicheng Li
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liang Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
- *Correspondence: Wenjing Wei, ; Xunxun Chen, ; Liang Chen,
| | - Xunxun Chen
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
- *Correspondence: Wenjing Wei, ; Xunxun Chen, ; Liang Chen,
| | - Wenjing Wei
- Key Laboratory of Translational Medicine of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
- *Correspondence: Wenjing Wei, ; Xunxun Chen, ; Liang Chen,
| |
Collapse
|
5
|
Khan MT, Khan TA, Ahmad I, Muhammad S, Wei DQ. Diversity and novel mutations in membrane transporters of Mycobacterium tuberculosis. Brief Funct Genomics 2022; 22:168-179. [PMID: 35868449 DOI: 10.1093/bfgp/elac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), encodes a family of membrane proteins belonging to Resistance-Nodulation-Cell Division (RND) permeases also called multidrug resistance pumps. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in exporting of lipid components across the cell envelope. These proteins perform an essential role in MTB survival; however, there are no data regarding mutations in MmpL, polyketide synthase (PKS) and acyl-CoA dehydrogenase FadE proteins from Khyber Pakhtunkhwa, Pakistan. This study aimed to screen mutations in transmembrane transporter proteins including MmpL, PKS and Fad through whole-genome sequencing (WGS) in local isolates of Khyber Pakhtunkhwa province, Pakistan. Fourteen samples were collected from TB patients and drug susceptibility testing was performed. However, only three samples were completely sequenced. Moreover, 209 whole-genome sequences of the same geography were also retrieved from NCBI GenBank to analyze the diversity of mutations in MmpL, PKS and Fad proteins. Among the 212 WGS (Accession ID: PRJNA629298, PRJNA629388, and ERR2510337-ERR2510345, ERR2510546-ERR2510645), numerous mutations in Fad (n = 756), PKS (n = 479), and MmpL (n = 306) have been detected. Some novel mutations were also detected in MmpL, PKS and acyl-CoA dehydrogenase Fad. Novel mutations including Asn576Ser in MmpL8, Val943Gly in MmpL9 and Asn145Asp have been detected in MmpL3. The presence of a large number of mutations in the MTB membrane may have functional consequences on proteins. However, further experimental studies are needed to elucidate the variants' effect on MmpL, PKS and FadE functions.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Phase V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Irshad Ahmad
- Department of Molecular Biology and Genetics. Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, P.R. China
| |
Collapse
|
6
|
Tarashi S, Zamani MS, Bahramali G, Fuso A, Vaziri F, Karimipoor M, Fateh A, Siadat SD. RNA Expression Analysis of Mycobacterial Methyltransferases Genes in Different Resistant Strains of Mycobacterium tuberculosis. IRANIAN BIOMEDICAL JOURNAL 2022; 26:240-251. [PMID: 35216515 PMCID: PMC9440689 DOI: 10.52547/ibj.26.3.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tuberculosis infection still represents a global health issue affecting patients worldwide. Strategies for its control may be not as effective as it should be, specifically in case of resistant strains of Mycobacterium tuberculosis (M.tb.) In this regard, the role of mycobacterial methyltransferases (MTases) in TB infection can be fundamental, though it has not been broadly deciphered. METHODS Five resistant isolates of M.tb were obtained. M.tb H37Rv (ATCC 27249) was used as a reference strain. Seven putative mycobacterial MTase genes (Rv0645c, Rv2966c, Rv1988, Rv1694, Rv3919c, Rv2756c, and Rv3263) and Rv1392 as SAM synthase were selected for analysis. PCR-sequencing and qRT-PCR were performed to compare mutations and expression levels of MTases in different strains. The 2-ΔΔCt method was employed to calculate the relative expression levels of these genes. RESULTS Only two mutations were found in isoniazid resistance (INHR) strain for Rv3919c (T to G in codon 341) and Rv1392 (G to A in codon 97) genes. Overexpression of Rv0645c, Rv2756c, Rv3263, and Rv2966c was detected in all sensitive and resistant isolates. However, Rv1988 and Rv3919c decreased and Rv1694 increased in the sensitive strains. The Rv1392 expression level also decreased in INHR isolate. CONCLUSION We found a correlation between mycobacterial MTases expression and resistance to antibiotics in M.tb strains. Some MTases undeniably are virulence factors that specifically hijack the host defense mechanism. Further evaluations are needed to explore the complete impact of mycobacterial MTases within specific strains of M.tb to introduce novel diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Samira Tarashi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|