1
|
Kielbowski K, Bratborska AW, Bakinowska E, Pawlik A. Sirtuins as therapeutic targets in diabetes. Expert Opin Ther Targets 2025; 29:117-135. [PMID: 40116767 DOI: 10.1080/14728222.2025.2482563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Sirtuins (SIRTs) are NAD+-dependent deacetylases that mediate post-translational modifications of proteins. Seven members of the SIRT family have been identified in mammals. Importantly, SIRTs interact with numerous metabolic and inflammatory pathways. Thus, researchers have investigated their role in metabolic and inflammatory disorders. AREAS COVERED In this review, we comprehensively discuss the involvement of SIRTs in the processes of pancreatic β-cell dysfunction, glucose tolerance, insulin secretion, lipid metabolism, and adipocyte functions. In addition, we describe the current evidence regarding modulation of the expression and activity of SIRTs in diabetes, diabetic complications, and obesity. EXPERT OPINION The development of specific SIRT activators and inhibitors that exhibit high selectivity toward specific SIRT isoforms remains a major challenge. This involves the need to elucidate the physiological pathways involving SIRTs, as well as their important role in the development of metabolic disorders. Molecular modeling techniques will be helpful to develop new compounds that modulate the activity of SIRTs, which may contribute to the preparation of new drugs that selectively target specific SIRTs. SIRTs hold promise as potential targets in metabolic disease, but there is much to learn about specific modulators and the final answers will await clinical trials.
Collapse
Affiliation(s)
- Kajetan Kielbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
Donkor N, Gardner JJ, Bradshaw JL, Cunningham RL, Inman DM. Ocular Inflammation and Oxidative Stress as a Result of Chronic Intermittent Hypoxia: A Rat Model of Sleep Apnea. Antioxidants (Basel) 2024; 13:878. [PMID: 39061946 PMCID: PMC11273423 DOI: 10.3390/antiox13070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a sleep disorder characterized by intermittent complete or partial occlusion of the airway. Despite a recognized association between OSA and glaucoma, the nature of the underlying link remains unclear. In this study, we investigated whether mild OSA induces morphological, inflammatory, and metabolic changes in the retina resembling those seen in glaucoma using a rat model of OSA known as chronic intermittent hypoxia (CIH). Rats were randomly assigned to either normoxic or CIH groups. The CIH group was exposed to periodic hypoxia during its sleep phase with oxygen reduction from 21% to 10% and reoxygenation in 6 min cycles over 8 h/day. The eyes were subsequently enucleated, and then the retinas were evaluated for retinal ganglion cell number, oxidative stress, inflammatory markers, metabolic changes, and hypoxic response modulation using immunohistochemistry, multiplex assays, and capillary electrophoresis. Statistically significant differences were observed between normoxic and CIH groups for oxidative stress and inflammation, with CIH resulting in increased HIF-1α protein levels, higher oxidative stress marker 8-OHdG, and increased TNF-α. Pyruvate dehydrogenase kinase-1 protein was significantly reduced with CIH. No significant differences were found in retinal ganglion cell number. Our findings suggest that CIH induces oxidative stress, inflammation, and upregulation of HIF-1α in the retina, akin to early-stage glaucoma.
Collapse
Affiliation(s)
- Nina Donkor
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.D.); (J.J.G.); (J.L.B.); (R.L.C.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jennifer J. Gardner
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.D.); (J.J.G.); (J.L.B.); (R.L.C.)
| | - Jessica L. Bradshaw
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.D.); (J.J.G.); (J.L.B.); (R.L.C.)
| | - Rebecca L. Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.D.); (J.J.G.); (J.L.B.); (R.L.C.)
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (N.D.); (J.J.G.); (J.L.B.); (R.L.C.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Wang Z, Jiang Z, Lu R, Kou L, Zhao YZ, Yao Q. Formulation strategies to provide oxygen-release to contrast local hypoxia for transplanted islets. Eur J Pharm Biopharm 2023; 187:130-140. [PMID: 37105362 DOI: 10.1016/j.ejpb.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Islet transplantation refers to the transfusion of healthy islet cells into the diabetic recipients and reconstruction of their endogenous insulin secretion to achieve insulin independence. It is a minimally invasive surgery that holds renewed prospect as a therapeutic method for type 1 diabetes mellitus. However, poor oxygenation in the early post-transplantation period is considered as one of the major causes of islet loss and dysfunction. Due to the metabolism chacteristics, islets required a high supply of oxygen for cell survival while a hypoxia environment would lead to severe islet loss and graft failure. Emerging strategies have been proposed, including providing external oxygen and speeding up revascularization. From the perspective of formulation science, it is feasible and practical to protect transplanted islets by oxygen-release before revascularization as opposed to local hypoxia. In this study, we review the potential formulation strategies that could provide oxygen-release by either delivering external oxygen or triggering localized oxygen generation for transplanted islets.
Collapse
Affiliation(s)
- Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhikai Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Lu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
4
|
Haghshenas L, Nabi-Afjadi M, Zalpoor H, Bakhtiyari M, Marotta F. Energy Restriction on Cellular and Molecular Mechanisms in Aging. EVIDENCE-BASED FUNCTIONAL FOODS FOR PREVENTION OF AGE-RELATED DISEASES 2023:297-323. [DOI: 10.1007/978-981-99-0534-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Li F, Chang Z, Li Y, Sun J. In vivo and in vitro impact of atorvastatin against myocardial ischaemia-reperfusion injury by upregulation of silent information regulator l and attenuation of endoplasmic reticulum stress-induced apoptosis. J Drug Target 2022; 30:1076-1087. [PMID: 35722944 DOI: 10.1080/1061186x.2022.2091577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We aimed to investigate the effects and mechanism of Atorvastatin on Myocardial Ischaemia-Reperfusion Injury in vitro and in vivo. The effects of Atorvastatin on Silent information regulator l (SIRT1) and endoplasmic reticulum (ER) stress were investigated in Myocardial ischaemia-reperfusion (MI/R) injury rat model and hypoxia/reoxygenation (H/R)-treated H9c2 cells. Pathological changes, inflammatory and heart injury markers, cell apoptosis and cell death, SIRT1 and cleaved Caspase-12 expressions, and ER stress relative proteins were measured through HE, enzyme-linked immunosorbent assay, quantitative TUNEL and flow cytometry, immunofluorescence and Western blotting with the assistance of the SIRT1 specific inhibitor EX527 and ER stress pathway blocker treatment. The results of our study demonstrated that atorvastatin treatment attenuated MI/R and H/R mediated inflammatory and heart injury markers, cell apoptosis and cell death, SIRT1 and cleaved Caspase-12 expressions, and ER stress relative protein levels. Finally, we found that atorvastatin reversed SIRT1 expression and blockade the ER stress pathway and increase the cardiomyocytes survival rate in the presence of MI/R and H/R. Our findings provided a new rationale for subsequent academic and clinical research on MI/R injury.
Collapse
Affiliation(s)
- Fei Li
- The First Ward of Cardiovascular Medicine, YanTaiShan Hospital, Yantai, Shandong, China
| | - ZiJuan Chang
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ying Li
- The First Ward of Cardiovascular Medicine, YanTaiShan Hospital, Yantai, Shandong, China
| | - Junjie Sun
- Department of Ultrasonic Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
6
|
Liu X, Li D, Liu Z, Song Y, Zhang B, Zang Y, Zhang W, Niu Y, Shen C. Nicotinamide mononucleotide promotes pancreatic islet function through the SIRT1 pathway in mice after severe burns. Burns 2022; 48:1922-1932. [DOI: 10.1016/j.burns.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
|
7
|
Okan A, Doğanyiğit Z, Eroğlu E, Akyüz E, Demir N. Immunoreactive definition of TNF- α, HIF-1 α, Kir6.2, Kir3.1 and M2 muscarinic receptor for cardiac and pancreatic tissues in a mouse model for type 1 diabetes. Life Sci 2021; 284:119886. [PMID: 34389402 DOI: 10.1016/j.lfs.2021.119886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Aslı Okan
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Ece Eroğlu
- School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Enes Akyüz
- Department of Biophysics, School of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya 07070, Turkey.
| |
Collapse
|