1
|
Corrêa EJA, Carvalho FC, de Castro Oliveira JA, Bertolucci SKV, Scotti MT, Silveira CH, Guedes FC, Melo JOF, de Melo-Minardi RC, de Lima LHF. Elucidating the molecular mechanisms of essential oils' insecticidal action using a novel cheminformatics protocol. Sci Rep 2023; 13:4598. [PMID: 36944648 PMCID: PMC10028760 DOI: 10.1038/s41598-023-29981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Essential oils (EOs) are a promising source for novel environmentally safe insecticides. However, the structural diversity of their compounds poses challenges to accurately elucidate their biological mechanisms of action. We present a new chemoinformatics methodology aimed at predicting the impact of essential oil (EO) compounds on the molecular targets of commercial insecticides. Our approach merges virtual screening, chemoinformatics, and machine learning to identify custom signatures and reference molecule clusters. By assigning a molecule to a cluster, we can determine its most likely interaction targets. Our findings reveal that the main targets of EOs are juvenile hormone-specific proteins (JHBP and MET) and octopamine receptor agonists (OctpRago). Three of the twenty clusters show strong similarities to the juvenile hormone, steroids, and biogenic amines. For instance, the methodology successfully identified E-Nerolidol, for which literature points indications of disrupting insect metamorphosis and neurochemistry, as a potential insecticide in these pathways. We validated the predictions through experimental bioassays, observing symptoms in blowflies that were consistent with the computational results. This new approach sheds a higher light on the ways of action of EO compounds in nature and biotechnology. It also opens new possibilities for understanding how molecules can interfere with biological systems and has broad implications for areas such as drug design.
Collapse
Affiliation(s)
- Eduardo José Azevedo Corrêa
- Multicenter Program in Postgraduate in Biochemistry and Molecular Biology, Federal University of São João del-Rei, Campus Divinópolis, Divinópolis, MG, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Pitangui, MG, Brazil
| | - Frederico Chaves Carvalho
- Department of Computer Science, Institute of Exact Sciences-ICEx, Federal University of Minas Gerais, Campus Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Suzan Kelly Vilela Bertolucci
- Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, MG, Brazil
| | - Marcus Tullius Scotti
- Chemistry Department, Exact and Nature Sciences Center, Federal University of Paraiba, Campus I, João Pessoa, PB, Brazil
| | | | - Fabiana Costa Guedes
- Technological Sciences Institute, Federal University of Itajubá, Itabira, MG, Brazil
| | - Júlio Onésio Ferreira Melo
- Department of Exact and Biological Sciences, Federal University of São João Del-Rei, Sete Lagoas Campus, Sete Lagoas, MG, Brazil
| | - Raquel Cardoso de Melo-Minardi
- Department of Computer Science, Institute of Exact Sciences-ICEx, Federal University of Minas Gerais, Campus Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Leonardo Henrique França de Lima
- Multicenter Program in Postgraduate in Biochemistry and Molecular Biology, Federal University of São João del-Rei, Campus Divinópolis, Divinópolis, MG, Brazil.
- Department of Exact and Biological Sciences, Federal University of São João Del-Rei, Sete Lagoas Campus, Sete Lagoas, MG, Brazil.
| |
Collapse
|
2
|
Synthesis, Characterization, In vivo, Molecular Docking, ADMET and HOMO-LUMO study of Juvenile Hormone Analogues having sulfonamide feature as an Insect Growth Regulators. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Sharma P, Thakur S, Awasthi P. In silico and bio assay of juvenile hormone analogs as an insect growth regulator against Galleria mellonella (wax moth) – Part I. J Biomol Struct Dyn 2016; 34:1061-78. [DOI: 10.1080/07391102.2015.1056549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Priyanka Sharma
- Department of Chemistry, National Institute of Technology, Hamirpur, HP 177005, India
| | - Sunil Thakur
- Institute of Environmental Science and Biotechnology, Hamirpur, HP 177001, India
| | - Pamita Awasthi
- Department of Chemistry, National Institute of Technology, Hamirpur, HP 177005, India
| |
Collapse
|
4
|
Sharma P, Thakur S, Awasthi P. Synthesis, Characterization, Biological Evaluation and Docking Study of Heterocyclic-Based Synthetic Sulfonamides as Potential Pesticide Against G. mellonella. Appl Biochem Biotechnol 2015; 176:125-39. [DOI: 10.1007/s12010-015-1562-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
|