1
|
Melo R, Lemos A, Preto AJ, Bueschbell B, Matos-Filipe P, Barreto C, Almeida JG, Silva RDM, Correia JDG, Moreira IS. An Overview of Antiretroviral Agents for Treating HIV Infection in Paediatric Population. Curr Med Chem 2020; 27:760-794. [PMID: 30182840 DOI: 10.2174/0929867325666180904123549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Paediatric Acquired ImmunoDeficiency Syndrome (AIDS) is a life-threatening and infectious disease in which the Human Immunodeficiency Virus (HIV) is mainly transmitted through Mother-To- Child Transmission (MTCT) during pregnancy, labour and delivery, or breastfeeding. This review provides an overview of the distinct therapeutic alternatives to abolish the systemic viral replication in paediatric HIV-1 infection. Numerous classes of antiretroviral agents have emerged as therapeutic tools for downregulation of different steps in the HIV replication process. These classes encompass Non- Nucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs), Nucleoside/Nucleotide Analogue Reverse Transcriptase Inhibitors (NRTIs/NtRTIs), INtegrase Inhibitors (INIs), Protease Inhibitors (PIs), and Entry Inhibitors (EIs). Co-administration of certain antiretroviral drugs with Pharmacokinetic Enhancers (PEs) may boost the effectiveness of the primary therapeutic agent. The combination of multiple antiretroviral drug regimens (Highly Active AntiRetroviral Therapy - HAART) is currently the standard therapeutic approach for HIV infection. So far, the use of HAART offers the best opportunity for prolonged and maximal viral suppression, and preservation of the immune system upon HIV infection. Still, the frequent administration of high doses of multiple drugs, their inefficient ability to reach the viral reservoirs in adequate doses, the development of drug resistance, and the lack of patient compliance compromise the complete HIV elimination. The development of nanotechnology-based drug delivery systems may enable targeted delivery of antiretroviral agents to inaccessible viral reservoir sites at therapeutic concentrations. In addition, the application of Computer-Aided Drug Design (CADD) approaches has provided valuable tools for the development of anti-HIV drug candidates with favourable pharmacodynamics and pharmacokinetic properties.
Collapse
Affiliation(s)
- Rita Melo
- Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal.,CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - Agostinho Lemos
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal.,GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège 4000, Belgium
| | - António J Preto
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - Beatriz Bueschbell
- Pharmaceutical Chemistry I, PharmaCenter, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Pedro Matos-Filipe
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - Carlos Barreto
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - José G Almeida
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal
| | - Rúben D M Silva
- Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal
| | - João D G Correia
- Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal
| | - Irina S Moreira
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1ºandar, Universidade de Coimbra, Coimbra 3004-517, Portugal.,Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht 3584CH, Netherland
| |
Collapse
|
2
|
Manal M, Manish K, Sanal D, Selvaraj A, Devadasan V, Chandrasekar MJN. Novel HDAC8 inhibitors: A multi-computational approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:707-733. [PMID: 28965432 DOI: 10.1080/1062936x.2017.1375978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Abnormal HDAC function triggers irregular gene transcription that hampers the essential cellular activities leading to tumour activation and progression. HDAC inhibition has, therefore, been reported as a potential target for cancer treatment. In the present study, a sequential computational framework was carried out to discover newer lead compounds, namely HDAC8 inhibitors for cancer therapy. Pharmacophoric hypotheses were generated based on hydroxamic acid derivatives reported earlier for HDAC inhibition. The model AAADR.122, demonstrated statistical significance (r2 = 0.93, Q2 = 0.81) and proved robust on validation with a cross-validated correlation coefficient of 0.89. It was utilized to arrive at novel hits through a virtual screening workflow. The specificity of the process was enhanced further by analysing the crucial interactions of the ligands with key catalytic residues, achieved by induced fit docking (PDB ID: 1T64). On assessment, the filtered leads displayed optimal drug like features. Investigations using density functional theory (DFT) also facilitated the recognition of molecular spots in the leads beneficial for HDAC8 interaction. Overall, two leads were proposed for HDAC8 inhibition with potential anti-cancer activity.
Collapse
Affiliation(s)
- M Manal
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University , Mysuru) , Tamilnadu , India
| | - K Manish
- b Centre of Advanced Study in Crystallography and Biophysics , University of Madras , Chennai , Tamilnadu , India
| | - D Sanal
- c Department of Pharmaceutical Chemistry , Al Shifa College of Pharmacy , Kerala , India
| | - A Selvaraj
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University , Mysuru) , Tamilnadu , India
| | - V Devadasan
- b Centre of Advanced Study in Crystallography and Biophysics , University of Madras , Chennai , Tamilnadu , India
| | - M J N Chandrasekar
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University , Mysuru) , Tamilnadu , India
| |
Collapse
|
3
|
Islam MA, Pillay TS. Structural requirements for potential HIV-integrase inhibitors identified using pharmacophore-based virtual screening and molecular dynamics studies. MOLECULAR BIOSYSTEMS 2016; 12:982-93. [PMID: 26809073 DOI: 10.1039/c5mb00767d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) is a life-threatening disease which is a collection of symptoms and infections caused by a retrovirus, human immunodeficiency virus (HIV). There is currently no curative treatment and therapy is reliant on the use of existing anti-retroviral drugs. Pharmacoinformatics approaches have already proven their pivotal role in the pharmaceutical industry for lead identification and optimization. In the current study, we analysed the binding preferences and inhibitory activity of HIV-integrase inhibitors using pharmacoinformatics. A set of 30 compounds were selected as the training set of a total 540 molecules for pharmacophore model generation. The final model was validated by statistical parameters and further used for virtual screening. The best mapped model (R = 0.940, RMSD = 2.847, Q(2) = 0.912, se = 0.498, Rpred(2) = 0.847 and rm(test)(2) = 0.636) explained that two hydrogen bond acceptor and one aromatic ring features were crucial for the inhibition of HIV-integrase. From virtual screening, initial hits were sorted using a number of parameters and finally two compounds were proposed as promising HIV-integrase inhibitors. Drug-likeness properties of the final screened compounds were compared to FDA approved HIV-integrase inhibitors. HIV-integrase structure in complex with the most active and final screened compounds were subjected to 50 ns molecular dynamics (MD) simulation studies to check comparative stability of the complexes. The study suggested that the screened compounds might be promising HIV-integrase inhibitors. The new chemical entities obtained from the NCI database will be subjected to experimental studies to confirm potential inhibition of HIV integrase.
Collapse
Affiliation(s)
- Md Ataul Islam
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
| | - Tahir S Pillay
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Private Bag X323, Arcadia, Pretoria, 0007, South Africa. and Division of Chemical Pathology, University of Cape Town, South Africa
| |
Collapse
|
6
|
Saxena AK, Devillers J, Pery ARR, Beaudouin R, Balaramnavar VM, Ahmed S. Modelling the binding affinity of steroids to zebrafish sex hormone-binding globulin. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:407-421. [PMID: 24874994 DOI: 10.1080/1062936x.2014.909197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The circulating endogenous steroids are transported in the bloodstream. These are bound to a highly specific sex hormone-binding globulin (SHBG) and in lower affinity to proteins such as the corticosteroid-binding protein and albumin in vertebrates, including fish. It is generally believed that the glycoprotein SHBG protects these steroids from rapid metabolic degradation and thus intervenes in its availability at the target tissues. Endocrine disrupters binding to SHBG affect the normal activity of natural steroids. Since xenobiotics are primarily released in the aquatic environment, there is a need to evaluate the binding affinity of xenosteroid mimics on fish SHBG, especially in zebrafish (Danio rerio), a small freshwater fish originating in India and widely employed in ecotoxicology, toxicology, and genetics. In this context, a zebrafish SHBG (zfSHBG) homology model was developed using the human SHBG (hSHBG) receptor structure as template. It was shown that interactions with amino acids Ser-36, Asp-59 and Thr-54 were important for binding affinity. A ligand-based pharmacophore model was also developed for both zfSHBG and hSHBG inhibitors that differentiated binders from non-binders, but also demonstrated structural requirements for zfSHBG and hSHBG ligands. The study provides insights into the mechanism of action of endocrine disruptors in zebrafish as well as providing a useful tool for identifying anthropogenic compounds inhibiting zfSHBG.
Collapse
Affiliation(s)
- A K Saxena
- a MPC Division , CSIR-CDRI , Lucknow , India
| | | | | | | | | | | |
Collapse
|
7
|
Zhao XZ, Smith SJ, Métifiot M, Johnson BC, Marchand C, Pommier Y, Hughes SH, Burke TR. Bicyclic 1-hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamide-containing HIV-1 integrase inhibitors having high antiviral potency against cells harboring raltegravir-resistant integrase mutants. J Med Chem 2014; 57:1573-82. [PMID: 24471816 PMCID: PMC3983366 DOI: 10.1021/jm401902n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Integrase
(IN) inhibitors are the newest class of antiretroviral
agents developed for the treatment of HIV-1 infections. Merck’s
Raltegravir (RAL) (October 2007) and Gilead’s Elvitegravir
(EVG) (August 2012), which act as IN strand transfer inhibitors (INSTIs),
were the first anti-IN drugs to be approved by the FDA. However, the
virus develops resistance to both RAL and EVG, and there is extensive
cross-resistance to these two drugs. New “2nd-generation”
INSTIs are needed that will have greater efficacy against RAL- and
EVG-resistant strains of IN. The FDA has recently approved the first
second generation INSTI, GSK’s Dolutegravir (DTG) (August 2013).
Our current article describes the design, synthesis, and evaluation
of a series of 1,8-dihydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamides,
1,4-dihydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides,
and 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides.
This resulted in the identification of noncytotoxic inhibitors that
exhibited single digit nanomolar EC50 values against HIV-1
vectors harboring wild-type IN in cell-based assays. Importantly,
some of these new inhibitors retain greater antiviral efficacy compared
to that of RAL when tested against a panel of IN mutants that included
Y143R, N155H, G140S/Q148H, G118R, and E138K/Q148K.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health , Frederick, Maryland 21702, United States
| | | | | | | | | | | | | | | |
Collapse
|