• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4794017)   Today's Articles (3134)
For: Martin TM. Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering. SAR QSAR Environ Res 2016;27:17-30. [PMID: 26784454 DOI: 10.1080/1062936x.2015.1125945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Number Cited by Other Article(s)
1
Piir G, Sild S, Maran U. Interpretable machine learning for the identification of estrogen receptor agonists, antagonists, and binders. CHEMOSPHERE 2024;347:140671. [PMID: 37951393 DOI: 10.1016/j.chemosphere.2023.140671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
2
Piir G, Sild S, Maran U. Binary and multi-class classification for androgen receptor agonists, antagonists and binders. CHEMOSPHERE 2021;262:128313. [PMID: 33182081 DOI: 10.1016/j.chemosphere.2020.128313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
3
Mukherjee R, Beykal B, Szafran AT, Onel M, Stossi F, Mancini MG, Lloyd D, Wright FA, Zhou L, Mancini MA, Pistikopoulos EN. Classification of estrogenic compounds by coupling high content analysis and machine learning algorithms. PLoS Comput Biol 2020;16:e1008191. [PMID: 32970665 PMCID: PMC7538107 DOI: 10.1371/journal.pcbi.1008191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/06/2020] [Accepted: 07/25/2020] [Indexed: 12/28/2022]  Open
4
Gonzalez MA, Takkellapati S, Tadele K, Li T, Varma RS. Framework towards more Sustainable Chemical Synthesis Design - A Case Study of Organophosphates. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019;7:6744-6757. [PMID: 32280570 PMCID: PMC7147815 DOI: 10.1021/acssuschemeng.8b06038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
5
Russo DP, Zorn KM, Clark AM, Zhu H, Ekins S. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction. Mol Pharm 2018;15:4361-4370. [PMID: 30114914 PMCID: PMC6181119 DOI: 10.1021/acs.molpharmaceut.8b00546] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Gadaleta D, Manganelli S, Roncaglioni A, Toma C, Benfenati E, Mombelli E. QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis. J Chem Inf Model 2018;58:1501-1517. [PMID: 29949360 DOI: 10.1021/acs.jcim.8b00297] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
7
Martin TM. A framework for an alternatives assessment dashboard for evaluating chemical alternatives applied to flame retardants for electronic applications. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2017;19:1067-1086. [PMID: 29333139 PMCID: PMC5759784 DOI: 10.1007/s10098-016-1300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
8
Du H, Cai Y, Yang H, Zhang H, Xue Y, Liu G, Tang Y, Li W. In Silico Prediction of Chemicals Binding to Aromatase with Machine Learning Methods. Chem Res Toxicol 2017;30:1209-1218. [PMID: 28414904 DOI: 10.1021/acs.chemrestox.7b00037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
9
Zhu XW, Xin YJ, Chen QH. Chemical and in vitro biological information to predict mouse liver toxicity using recursive random forests. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016;27:559-572. [PMID: 27353437 DOI: 10.1080/1062936x.2016.1201142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA