1
|
Champmartin C, Seiwert C, Aubertin M, Joubert E, Marquet F, Chedik L, Cosnier F. Percutaneous absorption of two bisphenol a analogues, BPAF and TGSA: Novel In vitro data from human skin. CHEMOSPHERE 2024; 367:143564. [PMID: 39424152 DOI: 10.1016/j.chemosphere.2024.143564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Bisphenol AF (BPAF) and TGSA are analogues of Bisphenol A (BPA). BPAF is used in polymer synthesis, while TGSA is applied in thermal papers. The EU classifies BPAF as toxic to reproduction and TGSA as a skin sensitizer. However, TGSA's other health effects remain unclear. BPAF contamination has been noted among electronic waste workers, and TGSA exposure is documented in various professions. Despite the significance of skin contact, data on skin permeation rates for BPAF and TGSA are limited. This study aimed to generate percutaneous absorption data for BPAF and TGSA following OECD guidelines. [14C]-labeled BPAF or TGSA was applied to human skin samples in vitro using Franz diffusion cells for 20 and 40 h, respectively. Key parameters such as steady-state flux, lag time, and skin permeability coefficient (Kp) were calculated. Furthermore, the distribution of the dose across different compartments, particularly within the skin, was evaluated at the conclusion of the experiment. Sequential strippings and epidermis-dermis separation were conducted for BPAF to predict the potential absorption of the remaining dose present within the skin. The permeability coefficients for BPAF and TGSA were found to be 1.9 E-03 and 1.6 E-03 cm/h, with 22% and 23% of the applied doses absorbed, respectively. Both chemicals are classified as "fast" penetrants based on their Kp values. These findings suggest that BPAF and TGSA are absorbed through the skin, highlighting potential occupational risks through dermal exposure. The new percutaneous absorption data will enhance the assessment of the occupational risks.
Collapse
Affiliation(s)
- Catherine Champmartin
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Claire Seiwert
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Matthieu Aubertin
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Emmy Joubert
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Fabrice Marquet
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Lisa Chedik
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Frédéric Cosnier
- Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
2
|
Suarez AG, Göller AH, Beck ME, Gheta SKO, Meier K. Comparative assessment of physics-based in silico methods to calculate relative solubilities. J Comput Aided Mol Des 2024; 38:36. [PMID: 39470860 DOI: 10.1007/s10822-024-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024]
Abstract
Relative solubilities, i.e. whether a given molecule is more soluble in one solvent compared to others, is a critical parameter for pharmaceutical and agricultural formulation development and chemical synthesis, material science, and environmental chemistry. In silico predictions of this crucial variable can help reducing experiments, waste of solvents and synthesis optimization. In this study, we evaluate the performance of different physics-based methods for predicting relative solubilities. Our assessment involves quantum mechanics-based COSMO-RS and molecular dynamics-based free energy methods using OPLS4, the open-source OpenFF Sage, and GAFF force fields, spanning over 200 solvent-solute combinations. Our investigation highlights the important role of compound multimerization, an effect which must be accounted for to obtain accurate relative solubility predictions. The performance landscape of these methods is varied, with significant differences in precision depending on both the method used and the solute considered, thereby offering an improved understanding of the predictive power of physics-based methods in chemical research.
Collapse
Affiliation(s)
- Adiran Garaizar Suarez
- Bayer AG, Pharmaceuticals, Structural Biology & Computational Design, Wuppertal, Germany
- Bayer AG, Crop Science, Data Science, Monheim, Germany
| | - Andreas H Göller
- Bayer AG, Pharmaceuticals, Structural Biology & Computational Design, Wuppertal, Germany
| | | | | | - Katharina Meier
- Bayer AG, Pharmaceuticals, Structural Biology & Computational Design, Wuppertal, Germany.
| |
Collapse
|
3
|
Pieper C, Engel N, Wend K, Kneuer C, Martin S. In Vitro Human Dermal Absorption Studies on Pesticides in Complex Mixtures: Investigation of Guidance Criteria and Possible Impact Parameters. TOXICS 2024; 12:248. [PMID: 38668471 PMCID: PMC11054108 DOI: 10.3390/toxics12040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Pesticides must not pose unacceptable risks to human health, so risk assessments are conducted before products are authorised. Dermal exposure is often the main route of intake, so estimating realistic and trustworthy dermal absorption values is crucial for risk assessment. Although there are agreed test guidelines for in vitro dermal absorption studies, not every product is tested due to cost reasons. The present dataset consists of 945 individual in vitro experiments on the dermal absorption of human skin with 179 active substances of pesticides in 353 different mixtures, including concentrates and dilutions. The dataset was evaluated to identify the possible impacts of experimental conditions and physico-chemical properties on dermal absorption. The dataset was also analysed to assess the appropriateness of the pro rata correction for untested dilutions, and the set concentration cut-off to decide on the dilution status for choosing a default value on dermal absorption. The study found that the implementation of specific guidelines improved the harmonisation of study conduct, with support for approaches such as pro rata correction and default values. Further analysis of the specific co-formulants may identify influencing factors that may be more important than the experimental variables.
Collapse
Affiliation(s)
- Christina Pieper
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany (K.W.)
| | | | | | | | | |
Collapse
|
4
|
Gheta SKO, Bonin A, Gerlach T, Göller AH. Predicting absolute aqueous solubility by applying a machine learning model for an artificially liquid-state as proxy for the solid-state. J Comput Aided Mol Des 2023; 37:765-789. [PMID: 37878216 DOI: 10.1007/s10822-023-00538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
In this study, we use machine learning algorithms with QM-derived COSMO-RS descriptors, along with Morgan fingerprints, to predict the absolute solubility of drug-like compounds. The QM-derived descriptors account for the molecular properties of the solute, i.e., the solute-solute interactions in an artificial-liquid-state (super-cooled liquid), and the solute-solvent interactions in solution. We employ two main approaches to predict solubility: (i) a hypothetical pathway that involves melting the solute at room temperature T = T¯ ([Formula: see text]) and mixing the artificially liquid solute into the solvent ([Formula: see text]). In this approach [Formula: see text] is predicted using machine learning models, and the [Formula: see text] is obtained from COSMO-RS calculations; (ii) direct solubility prediction using machine learning algorithms. The models were trained on a large number of Bayer in-house compounds for which water solubility data is available at physiological pH of 6.5 and ambient temperature. We also evaluated our models using external datasets from a solubility challenge. Our models present great improvements compared to the absolute solubility prediction with the QSAR model for the artificial liquid state as implemented in the COSMOtherm software, for both in-house and external datasets. We are furthermore able to demonstrate the superiority of QM-derived descriptors compared to cheminformatics descriptors. We finally present low-cost alternative models using fragment-based COSMOquick calculations with only marginal reduction in the quality of predicted solubility.
Collapse
Affiliation(s)
- Sadra Kashef Ol Gheta
- Bayer AG, Pharmaceuticals, R&D, Computational Molecular Design, 42096, Wuppertal, Germany
| | - Anne Bonin
- Bayer AG, Pharmaceuticals, R&D, Computational Molecular Design, 42096, Wuppertal, Germany
| | - Thomas Gerlach
- Bayer AG, Crop Science, R&D, Digital Transformation, 40789, Monheim, Germany
- Bayer AG, Engineering & Technology, Thermal Separation Technologies, 51368, Leverkusen, Germany
| | - Andreas H Göller
- Bayer AG, Pharmaceuticals, R&D, Computational Molecular Design, 42096, Wuppertal, Germany.
| |
Collapse
|
5
|
Sobańska AW. In silico assessment of risks associated with pesticides exposure during pregnancy. CHEMOSPHERE 2023; 329:138649. [PMID: 37043889 DOI: 10.1016/j.chemosphere.2023.138649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Novel Quantitative Structure-Activity Relationship (QSAR) models of compounds' placenta (PL) permeability expressed as their log FM (fetus-to-mother blood concentration) values or binary PL1/0 (crossing/non-crossing) score were generated using a number of statistical tools: Multiple Linear Regression, Boosted Trees, Principal Component Analysis and Artificial Neural Networks, on the basis of molecular descriptors calculated by Mordred software and selected using Partial Least Squares (PLS) analysis. It was established that the most important predictor of both log FM and the binary PL1/0 score is Lipinski - a binary variable reflecting the compounds' ability to satisfy the criteria of drug-likeness according to the Lipinski's "Rule of 5". The quantitative (log FM) and qualitative (PL1/0) models of PL permeability were applied to 345 pesticides from different chemical families (triazines, carbamates, pyrethroids, organochlorine, organophosphorus and miscellaneous compounds). The ability of studied pesticides to cross the placenta was assessed; the basic physico-chemical parameters responsible for good or poor placenta transport of pesticides were identified and the relationships between the pesticides' PL permeability, blood-brain barrier (BBB) transfer and gastro-intestinal (GI) absorption were investigated. It was found (on the basis of logistic regression analysis) that the probability of a compound crossing the placenta (PL1) is inversely correlated with its lipophilicity and molar refractivity and positively correlated with the total count of oxygen and nitrogen atoms.
Collapse
Affiliation(s)
- Anna W Sobańska
- Department of Analytical Chemistry Medical University of Lodz, 90-151, Łódź, Muszyńskiego 1, Poland.
| |
Collapse
|
6
|
Liu F, Hutchinson RW. Semiquantitative sensitization safety assessment of extractable and leachables associated with parenteral pharmaceutical products. Regul Toxicol Pharmacol 2023; 138:105335. [PMID: 36608924 DOI: 10.1016/j.yrtph.2023.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Extractable and leachables (E&Ls) associated with parenteral pharmaceutical products should be assessed for patient safety. One essential safety endpoint is local or systemic sensitization. However, there are no regulatory guidelines for quantitative sensitization safety assessment of E&Ls. A semiquantitative sensitization safety assessment workflow is developed to refine the sensitization safety assessment of E&Ls associated with parenteral pharmaceutical products. The workflow is composed of two sequential steps: local skin sensitization and systemic sensitization safety assessment. The local skin sensitization step has four tiers. The output from this step is the acceptable exposure level for local sensitization (AELls) and this safety threshold can be used for local sensitization safety assessment. From the derived AELls, the systemic sensitization safety assessment at step 2 proceeds in 2 tiers. The output from this workflow is the derivation of acceptable exposure level for systemic sensitization (AELss). When the estimated human daily exposure (HDE) is compared with the AELss, the margin of exposure is calculated to determine the sensitization safety of E&Ls following parenteral administration. The current work represents an initial effort to develop a scientifically robust process for sensitization safety assessment of E&Ls associated with parenteral pharmaceutical products.
Collapse
Affiliation(s)
- Frank Liu
- The Estée Lauder Companies, 155 Pinelawn Rd, Melville, NY, USA.
| | | |
Collapse
|